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ABSTRACT

There is a movement in progress
among operating system vendors to
bring greater security through
preventative measures.  One such
measure making headway in the Linux
operating system is Role-Based Access
Control (RBAC).  For such a measure to
be widely accepted, it needs to have an
insignificant performance hit and scale
well in large corporate environments.
Such a measure also needs to be intuitive
and require as little manual configuration
as possible, while at the same time
providing an effective level of security.
This paper provides a case study of an
RBAC system and illustrates changes
that were made in order to help it
become more widely accepted and
provide a strong level of protection
while still being administrator-friendly.
The changes involved altering data
structures to remove algorithmically
complex bottlenecks, providing dynamic
unions of policy to ease configuration
and reduce memory usage, allowing
dynamic interpretation of wildcards in
security policy, implementing an
anticipatory memory allocator, and
providing a robust method of defining
allowed user and group transitions on a
Linux system.

1.  INTRODUCTION

In today's globally networked
society, security is of great concern to
everyone, from the individual home user
to the corporate giants.  Security is a
concern for good reason, as the number
of successful attacks against computer
systems increases yearly.  If a perfect
solution in the technical sense to the
problem of security existed, the global
community would still not accept it.
Often, the claim is made that
performance must be sacrificed in the
name of security.  For this reason, many
commercial entities are unwilling to add
additional levels of security to their
already resource-starved systems.  In
addition to a base level performance
decrease, scalability plays a role,
especially for large corporations who
have thousands of users and incredibly
complex and diverse software systems.

In addition to incurring a negligible
performance hit, a security system that
will be accepted by the global
community must require little to no
manual configuration. In other words,
the security system must be a solution
and not a toolbox for an administrator to
hand-write custom policies for every
machine under his/her control.  Creating
an effective security solution as opposed



to an effective security toolbox is
perhaps not obviously a non-trivial task.
A few questions that must be resolved
are:  How do we anticipate future
legitimate usage?  How do we determine
what resources are important to protect?
When do we decide to label an
application as privileged?  How do we
reduce policies to a manageable size
while retaining the same level of
security?

Algorithms devised to solve the
problems these questions describe are
obviously complex in design and most
likely complex in the time and space
sense of algorithm complexity.  Thus,
innovative ideas need to be used for both
the problems themselves and the
solutions to the problems.  The primary
focus of my recent research has been to
apply intelligent solutions to the already
present solutions I have developed to
answer the questions above.

A necessary decision in a usable
security system is to abstract the policy
definition from the details of the
operating system.  Administrators
generally do not understand the security
ramifications of every single system call
implemented by the operating system, so
by abstracting policy permissions into
read, write, execute, etc. the
administrator immediately knows what
kind of operations are allowed on a
resource.  Even the most knowledgeable
of administrators might not be aware that
it is possible to kill a process not only
with the kill system call, but also by
using a number of flags of the fcntl
system call.

Of course, there is a tradeoff being
made here between granularity and
usability.  For a security system to be
both flexible and tightly controlling of
resources, it needs to provide a high

level of granularity.  One direction that
can be taken in regards to this tradeoff is
to only increase granularity where there
is a definite security benefit.  For
instance, restricting whether a process
can call the getpid system call has no
security benefit, so enforcing such a
thing in the security system would
simply add bloat and be confusing to the
administrator.  Increasing granularity
where there is a security benefit has been
the secondary focus of my recent
research.

2.  GRSECURITY

The results of my research into
performance and granularity in security
systems have been implemented in the
grsecurity [0] project.  Grsecurity exists
as a patch to the 2.4 and 2.6 trees of the
Linux kernel and provides many security
features [1] from the operating system
level.  It employs a "detection,
prevention, and containment" [2] model
through its wide spectrum of security
enhancements.

Among its list of features include
change root restrictions that disallow a
process with a file system root changed
by the chroot system call from
performing certain operations that would
allow it to access the global file system
or affect outside processes in any way.
Grsecurity also includes the work of the
PaX project [3] that provides protection
against exploitation of entire classes of
address space bugs, including the most
commonly exploited software
vulnerability today: the buffer overflow.
Additionally, grsecurity provides a
robust Role-Based Access Control 
(RBAC) system that offers fine-grained
auditing in addition to access control.

3.  Role-Based Access Control
(RBAC)



According to [4], Role-Based
Access Control allows access decisions
to be "based on the roles that individual
users have as part of an organization."
Roles are simply a descriptor for the
kinds of tasks a user can perform.  In the
real world, a role can be a doctor, nurse,
teller, manager, etc.  In an RBAC
system, a role can be created for a DNS
server administrator, local users that
only check their mail, or remote users of
a source code repository like CVS.  For
these roles, the policy administrator can
how users within those roles can interact
with the system on a per-process basis.
Essentially, each role will its own view
of the file system and other processes.
RBAC systems also carry over concepts
from Mandatory Access Control (MAC)
such as subjects and objects.  Subjects
are labels for processes, while objects
are generally labels for files being
accessed. [5]

Grsecurity takes the basic concept
of a Role-Based Access Control system
and provides several useful extensions.

In grsecurity, roles are split into
three different categories: user, group,
and special roles.  User and group roles
are roles that are tied to specific user or
group IDs.  To illustrate, if an
application were to call setuid(31) and
UID 31 had an associated user role, then
that user role would be automatically
applied to the application.  Special roles
however can be created and assigned
arbitrarily as they have no association
with the UNIX user or group ID system.
Since a design goal of grsecurity is never
to grant any privilege over what the
Linux system would normally allow,
special roles are incredibly useful for
creating separate administrator roles on
the system, as every administrator still
needs to have UID 0.

Grsecurity also features IP-based
roles.  For any role, a list of IP addresses
can be specified with optional netmasks
that define which hosts can use the role.
If a user logged in from a host not
specified in the list for the role attempts
to use the role, they will fall back
through the role heirarchy until an
applicable role can be found.  In 
grsecurity, the role hierarchy moves from
high to low in the following order:
special role, user role, group role, default
role.  The default role is the role that is
applied when no other role applies.  

Grsecurity also implements role
transition tables.  These allow the policy
administrator to specify the special roles
to which a given role can transition.
Grsecurity provides both authenticated
and non-authenticated access to special
roles.  Role transition tables are
necessary in the case of non-
authenticated access and provide an
additional layer of protection in the case
of a compromised password for
authenticated access.

Perhaps most importantly,
grsecurity is the only free software
security system that features an
intelligent learning system that can
generate least-privilege policies for the
entire system with no configuration.  
The learning system intercepts every
access checkpoint in the RBAC system
and sends a log entry through a character
device to an application in user space
that caches the most frequently logged
entries and writes all logs not existing in
the cache to disk.  Each log entry
includes the full pathname of the binary
or script that was executed for the
process to be created, the UID and GID
of the process, the full pathname, inode
number, device number, and operation
type of the target file, the number of the



Linux capability used, the socket type,
protocol, IP address, and port involved
in a socket operation, and the resource 
type and requested resource amount.
With this information, very descriptive
policies can be generated.  The learning
feature can be used on the entire system,
a single role, or a single process.  When
learning is performed on a single role or
process, the rest of the system can still
be protected.  Additionally, only access
attempts that are denied for that role or
process are logged by the learning
system, so it can be very useful in
correcting a non-functioning policy.

The learning log analyzer and rule
set generator is a very complex program
as it attempts to solve the difficult
problems stated in the introduction.  The
application performs a complex multi-
stage graph and heuristics-based
reduction and analysis of rules.
Reduction involves reducing the number
rules in a policy in appropriate ways.
For instance, reducing 1000 similar
accesses to randomly named temporary
files located within /tmp is appropriate,
while reducing two different accesses to

important files within /etc is not.
Analysis involves detecting whether a
reduction led to a weakened policy and
auto-correcting the weakness.  For
instance, if a number read accesses in /
etc were reduced to read access to all of /
etc, this would cause the problem of
leaving the private SSH keys located in /
etc/ssh readable.  In this case, the
analysis algorithm would insert a rule
disallowing reads to /etc/ssh.  Because
these processes are so complex in terms
of time and memory consumption, the
performance review accomplished
through my research was most welcome.

4.  METHODOLOGY

To identify the performance
bottlenecks in gradm, the RBAC
administration utility of grsecurity, I
compiled the utility with profiling
support.  So that any function of linear or
polynomial complexity would be clearly
visible, I created a rule set with over
300,000 objects.  The following is the
resulting profile of the application:

% cumulative self self total
time seconds seconds calls s/call s/call name
53.89 35.84 35.84 341732 0.00 0.00 is_proc_object_dupe
43.45 64.73 28.89 49 0.59 0.59 expand_acl
1.34 65.62 0.89 405541 0.00 0.00 gradmlex
0.59 66.01 0.39 1 0.39 37.45 gradmparse
0.38 66.26 0.25 325745 0.00 0.00 add_proc_object_acl
0.14 66.35 0.09 379 0.00 0.00 check_permission
0.09 66.41 0.06 1 0.06 0.06 conv_user_to_kernel

The important area to note here is
the leftmost column, which identifies the
percentage of time spent in a single
function out of the entire application.  It
is clearly visible that there are two huge
bottlenecks: is_proc_object_dupe and
expand_acl.  Upon analysis of the source
code of gradm, it was determined that

the is_proc_object_dupe function has O
(n) complexity, where n is the number of
objects within the subject currently being
parsed from the centralized policy file.
However, because the function is called
during the addition of every object, the
total effective complexity of using the
function becomes O(n2).



The second function, expand_acl,
is related to subject inheritance in the
centralized policy file.  In grsecurity's
RBAC system, the configuration
language supports inheriting the policy

of a parent subject, where parent subject
is defined as a subject placed on a parent
directory of the inheriting subject.  To
illustrate using a sample configuration:

subject /
/ r
/opt rx
/home rwxcd
/mnt rw
/dev
/dev/grsec h
/dev/urandom r
/dev/random r
/dev/zero rw
/dev/input rw
/dev/psaux rw
/dev/null rw
/dev/tty? rw
/dev/console rw
/dev/tty rw
/dev/pts rw
/dev/ptmx rw
/dev/dsp rw
/dev/mixer rw
/dev/initctl rw
/dev/mem h
/dev/kmem h
/dev/port h
/bin rx
/sbin rx
/lib rx
/usr rx
/etc rx
/proc rwx
/proc/kcore h
/proc/sys r
/root r
/tmp rwcd
/var rwxcd
/var/tmp rwcd
/var/log r
/boot r
/etc/grsech
/etc/ssh h



-CAP_SYS_TTY_CONFIG
-CAP_LINUX_IMMUTABLE
-CAP_NET_RAW
-CAP_MKNOD
-CAP_SYS_ADMIN
-CAP_SYS_RAWIO
-CAP_SYS_MODULE
-CAP_SYS_PTRACE
-CAP_NET_ADMIN
-CAP_NET_BIND_SERVICE
-CAP_SYS_CHROOT

subject /usr/sbin/sshd dp
/etc/ssh r
/dev/log rw

+CAP_SYS_TTY_CONFIG
+CAP_SYS_CHROOT

The important thing to note in this
configuration is that the administrator
only needed to add two more Linux
capabilities and more privileged access
to two files over the parent subject.  To
simplify configuration and improve
policy readability, he/she used
configuration inheritance to make the /
usr/sbin/sshd subject inherit the subject
of / in this case, as / was the closest
matching parent directory.  To reduce
complexity of policy enforcement in the
kernel, it was initially decided to expand
the inheritance within the administration
utility itself.  The expand_acl function
performs this static subject inheritance.
To accomplish this, the expand_acl
function iterates upon every object in the
parent subject and compares the object's
filename with the filename of every
filename in the inheriting subject.  If the
filename does not exist in the inheriting
subject, then the object in the parent
subject is copied into the inheriting
subject.  Clearly, this function has
polynomial complexity due to its nested
loops.  It is specifically O(m*n), where
m is the number of objects in the parent

subject and n is the number of objects in
the inheriting subject.

Other bottlenecks were identified
without the need for profiling.  To
reduce the kernel complexity of access
lookups, a decision was initially made to
have the administration utility expand
the ‘*’ and ‘?’ wildcard characters in
objects.  This has a number of effects on
both performance and granularity.  Since
the wildcards are interpreted at policy
enable time, an object like /tmp/* does
not apply to temporary files created after
the policy is enabled.  Additionally,
every existing file matching the
wildcarded has to be accessed to obtain
its inode and device numbers, which
increases run time proportional to the
number of files the object expands to.
This also has an effect on performance in
other areas of the code as the additional
objects further demonstrate the high
algorithmic complexity of certain
functions, such as the two analyzed
earlier.  For example, an object like /
dev/* will on most Linux systems
expand to over 1500 different objects.
Accessing each of these files and
creating new object structures for each



entry takes a considerable amount of
time relative to the total run time of an
otherwise small rule set.

The learning log analysis and rule
set generation code utilizes a graph
structure to perform rule set reducation.
A level of abstraction is provided so that
the same data structure can be used when
performing the heuristics-based
reduction.  Though a discussion of the
actual algorithms behind this reduction
is not appropriate for this paper, what is
of importance is how the process of
constructing the graph structures affects
performance.  Each vertex in the graph
contains a dynamically allocated array of
pointers to adjacent vertices.  Upon
addition of another adjacent vertex
during graph construction, the array
containing the pointers to adjacent
vertices is resized to a size equal to the
current size plus the size necessary for
the storage of an additional pointer.
Additionally, because the graphs that
describe the access profile parsed from
the learning log are generated
immediately, there are many calls to the
dynamic memory allocator to store the
information for each vertex.  The
resizing of pointer arrays can cause poor
performance, as the reallocation function
may have to move the array to resize it.
When dealing with large numbers of
dynamic memory allocations, the brk
system call is frequently called to expand
the size of the heap.  The resulting
transfer of control to the kernel on a
constant basis greatly decreases
performance.

One area that I noticed needed
improvement in terms of granularity
involved the superuser's ability to
transition to other users or groups.  
This can be done through the family of
system calls that allow a privileged user
to modify the current process' effective,

real, saved, or file system user or group
IDs.  It can also be accomplished by
executing a setuid or setgid application
with the owner or group of the binary set
to the user or group the user wishes to
transition to.  

On an unmodified Linux system,
superusers have the ability to bypass the
normal DAC system, effectively
allowing them to modify files owned by
other users, even if there are no such
permissions specified that would
normally allow such a modification.
Linux does provide, however, a
capability named
CAP_DAC_OVERRIDE that allows one
to disable the ability to override the
DAC system for a given process.  Linux
also provides two capabilities named
CAP_SETUID and CAP_SETGID that
permit a process to transition to other
users or groups.  In the presence of these
capabilities, a process can effectively
recreate the CAP_DAC_OVERRIDE
capability by first checking the
ownership of a file it wishes to access
and then transitioning to the owner of
the file.  After it accesses the file, the
process can return to its old user or
group ID and repeat the process for
another file.  In RBAC it is important to
interlock with the DAC permissions by
adding policy enforcement at areas in
which a process can modify its state to
conform to the DAC permissions and be
able to modify a given file.  There is a
clear lack of granularity in this case that
has an additional effect.  In grsecurity's
RBAC system, changing one's real UID
or GID causes an immediate transition to
an applicable user or group role.  It is
important for these transitions to be
protected as well, since a process with
CAP_SETUID or CAP_SETGID can
arbitrarily change to any user or group
role.



5.  IMPLEMENTATION

In the previous section, a profile of
the administration utility was presented
that demonstrated two functions with
high algorithmic complexity.  The two
functions, is_proc_object_dupe and
expand_acl constitute over 96% of the
running time of the application.  To
correct these two bottlenecks, I proposed
two changes in my research: a hash table
data structure for each subject that
contains pointers to each object
belonging to the subject, and kernel
interpretation of configuration
inheritance.

Three goals were made for the
conversion to hash tables.  The objects
belonging to each subject should still be
able to be traversed in a list fashion, not
by skipping over null entries in the hash
table.  In addition, the change should be
abstracted from higher-level functions
and thus require minimal changes to the
high-level code.  The hash tables should
additionally be searchable by filename.

The hash function used is the same
provided by the Linux kernel to hash
filenames.  Quadratic probing was

chosen to handle collisions in the hash
table due to its simplicity and
effectiveness in preventing primary
clusters.  Because objects would be
continually added to the subject and the
number of them would not be pre-
determined, a method to resize the hash
table was created.  It was noted that
although the number of subjects in a
given policy is much smaller than the
number of objects, the same O(n2)
algorithm applied to duplicate checking
of subjects.  For this reason, similar hash
tables were created to store pointers to
each subject belonging to a given role.
By making these changes, several
expensive routines in the administration
utility were changed to constant time
complexity.

Below is a profile taken of the
application after the algorithmic
enhancements.  You will notice that the
previous two bottlenecks have
disappeared and that now the lexer is the
most time intensive operation of the
application.  You will also notice the
time percentages are more evenly
distributed among the functions, unlike
previously where two functions alone
made up 96% of the running time.

% cumulative self self total
time seconds seconds calls s/call s/call name    
18.94 0.32 0.32 405541 0.00 0.00 gradmlex
14.20 0.56 0.24 24992880 0.00 0.00 partial_name_hash
8.88 0.71 0.15 352031 0.00 0.00 lookup_name_entry
8.28 0.85 0.14 1088522 0.00 0.00 insert_name_entry
7.69 0.98 0.13 336152 0.00 0.00 lookup_hash_entry
7.10 1.10 0.12 1440541 0.00 0.00 full_name_hash
6.51 1.21 0.11 712337 0.00 0.00 insert_hash_entry
6.51 1.32 0.11 1 0.11 1.62 gradmparse
5.92 1.42 0.10 1440541 0.00 0.00 nhash
4.14 1.49 0.07 1 0.07 0.07 conv_user_to_kernel
3.55 1.55 0.06 325745 0.00 0.00 proc_object_mode_conv
3.25 1.61 0.06 1048477 0.00 0.00 fhash
2.96 1.66 0.05 325745 0.00 0.00 add_proc_object_acl



0.59 1.67 0.01 351346 0.00 0.00 is_proc_object_dupe
0.59 1.68 0.01 336077 0.00 0.00 insert_acl_object
0.59 1.69 0.01 11058 0.00 0.00 is_deleted_file_dupe

The change to a kernel
interpretation of configuration
inheritance required many changes.  On
the user land end, a pointer had to be
added to each subject, which referenced
its parent subject.  Until all rules from
the configuration file are parsed and
converted into usable data structures, the
pointer remains null.  After this time,
each subject of every role is checked to
see if it is using configuration
inheritance.  If it is, each trailing path
components of the current subject's
filename is stripped off and a hash
lookup is performed to find a subject in
the current role with that modified
filename.  This process iterates until the
remaining filename is the file system
root.  When a matching subject is found,
the parent subject pointer for the current
subject is set to the matching subject.  If
the subject does not use configuration
inheritance, the parent subject pointer
remains null.  What essentially results
when this entire process is complete are
chains of inheritance for subjects.  This
happens because a subject that is
inherited by another subject can itself
inherit a subject, and so on.  The chains
are traversable by following the parent
subject recursively until a null parent
subject pointer is found.

The kernel land changes required
for the new configuration inheritance
system were much more extensive.  The
process of passing the generated policy
to the kernel for enforcement essentially
involves the kernel taking a pointer from
user space and copying the structures
from user space directly, following any
pointers located within the structures and
copying them as well.  Before the new

configuration inheritance system, it was
never the case that two pointers in the
information passed to the kernel
referenced the same location.  Now with
the new system, a method had to be
implemented to determine if a subject
had already been copied to the kernel, so
that the parent subject pointer could
reference the kernel address of the
already copied parent subject.  Since the
number of subjects being copied to the
kernel is pre-determined, a hash table
was created that mapped the user space
address of a subject to its address in the
kernel.  Upon seeing a parent subject
pointer, its user space address is looked
up in the hash table.  If a match is not
found, then the subject is copied into
kernel memory, the hash table is
updated, and the address of the subject in
kernel memory is returned.  Otherwise,
the matching kernel address is returned.
The caller of the function sets this
address to the parent subject pointer.
The low-level access check functions
also had to be modified for the new
inheritance system.  Normally, upon
attempted access of a file, the RBAC
system would traverse down the file
system tree towards the real file system
root, checking every path along the way
for a matching object in the subject of
the current process.  If a matching object
were found, then the requested
permissions would be checked against
the granted permissions, and either
success or failure would be returned in
the appropriate cases.  With the new
configuration system, at every iteration
of traversing down the file system tree,
the chain of parent subjects is followed,
and a lookup for the path at the current
iteration is performed to attempt to
obtain an object.  If an object is found,



then the lookup function proceeds as
before with checking permissions and
returning success or failure.

Not only does this change to a
kernel interpretation of configuration
inheritance result in performance
improvements in user space, but it also
results in huge memory savings in the
kernel.  The memory savings are most
dramatic when the inherited subject has
many objects and there are many
subjects inheriting that subject.  Upon a
poll of users of the RBAC system, it was
shown that many use this form of
configuration and will thus benefit
greatly from such a change.

The addition of a kernel
interpretation of wildcard characters in
objects was a welcome change among
users.  It provides a dynamic matching of
the object containing wildcards to the
file being accessed.  This results in large
memory savings in the kernel in many
instances.  For the feature to be viable
performance-wise, however, it had to
have no impact on the performance of
normal access lookups.  With this in
mind, a suitable solution was developed.
The general idea was to attach an array
of filenames and allowed permissions to
an object, and when the access lookup
matched that object when no explicit
object existed for the file being accessed,
the filenames in the array would be
checked against that of the file being
accessed.

To accomplish this, two problems
had to be solved.  First, we needed to
decide what object the wildcarded object
would be attached to.  Second, we don't
want to generate a filename for every file
access, as the RBAC's access lookups
uses the structures provided by Linux's
Virtual File System (VFS) to identify
files by inode and device number.  The

solution to the first problem was to find
the first wildcard character in the
wildcarded filename, and truncate the
filename at the point where the path
component started that contained the
wildcard character.  So for example, if
the object were /home/*/test/*/file, then
the object that the wildcarded object
would be attached to would be /home.
We can be assured in the kernel that this
is the case since the administration
utility will enforce that there be an object
for /home when it finds a wildcarded
object that it needs to attach to the /home
object.  This solution also implies that
the access lookup functions will favor
non-wildcarded objects.  That is, if the
objects  /home/*/test/*/file and /
home/user1/test exist and the file /
home/user1/test/dir1/file is accessed,
the /home/user1/test object will match
first and thus be used to check
permissions and grant or deny access to
the file.  To solve the second problem,
filenames are generated by demand by
the access lookup functions in the RBAC
system.  
Additionally, so that the filename is not
recreated every time a wildcarded object
is encountered in a lookup for a single
file, the lower level access lookup
functions have as a parameter a pointer
to a pointer on the stack that references
the created filename.  If the filename has
not been generated yet, the dereferenced
pointer results in a null pointer, at which
point the code will generate the filename
and update the pointer to reference the
generated filename.  If the dereferenced
pointer is non-null, then the resulting
pointer is used as a reference to the
filename.  Currently, only the ‘*’ and ‘?’
wildcards are expanded, however this
could easily be extended to support such
objects as /dev/tty[0-9]+.  

The following chart demonstrates
the performance benefit of the kernel



interpretation of wildcarded objects.  It
represents the time required to enable a
policy through the administration utility.
The rule set that was used contained a
combination of 4,000 objects and
wildcarded objects.  With the kernel
interpretation of wildcarded objects,
these objects are not expanded at all, and

only 4,000 objects are sent to the kernel.
Without this new enhancement, the
wildcarded objects would expand to over
400,000 objects that would all be passed
directly to the kernel.  You can see an
enormous difference in running times of
the two versions.

To solve the problems regarding
dynamic memory allocation and resizing
in the learning log analysis and rule set
generation code, an anticipatory memory
allocation system was developed.  The
allocation system has two parts: an
allocator and a reallocator.  The allocator
allocates a number of structures that hold
pointers to large contiguous buffers.
These buffers are used for memory
allocations that are not meant to be
resized.  Initially, the pointers to the
contiguous buffers are null.  When an
allocation request is made, the algorithm
checks each of the structures to see if its
pointer to an allocation buffer is not null.
If the pointer is not null, the algorithm
checks to see if there is enough room in
the contiguous buffer for the allocation,
and returns the allocated address if so.  If
there is not enough room, the algorithm

continues through all the structures
looking for a contiguous buffer with
enough room, or a null pointer.  If a null
pointer is found, then a contiguous
buffer is allocated and the address
returned is the start of the buffer.  If the
algorithm iterates to the last structure
with no success, then additional
structures are added and a new
contiguous buffer is allocated to service
the current allocation and allow for
future allocations.  Because of the usage
of memory allocations in the specific
instance of the learning log analysis and
rule set generation code, a method to free
allocated memory was not needed.  All
allocated memory is generally in
constant use until the process exits.

The reallocator requires a special
allocator that allows for reallocation.
When an allocation request is made, a



buffer is allocated that allows room for a
structure that contains information about
the current usage of the buffer and its
maximum size.  The allocated buffer
also allows for a large gap at the end for
future growth.  The returned address is
the start of the buffer plus the size of the
allocation structure.  Upon a reallocation
request, the address passed to the
function is subtracted by the size of the
allocation structure, and then its
members are checked to see if there is
enough room in the current buffer to
satisfy the request.  If there is, then the
address passed in is simply returned.  If
there is not, then the reallocation
function provided by libc is called with a
size large enough to service the current
request and several future requests.  The
address returned is the start of the
reallocated buffer plus the size of the
allocation structure.  To free these kinds
of allocations, the free function simply
subtracts the size of the allocation
structure and frees the resulting pointer.

To test the performance of the new
memory allocation functions, an
application was written that simulates
the usage of memory allocation in the
learning log analysis and rule set
generation code.  The following chart
demonstrates the significant
improvement over the standard memory
allocation functions.  The only unusual
difference between the two running
times is the system time. The small
difference, around .03s, can be explained
for.  When large contiguous memory
allocations are made, the libc allocation
functions, which the new allocation
functions wrap around, do not use the
brk system call.  Instead, they create an
anonymous mapping through the mmap
system call.  The mmap system call is
more complex than the brk system call,
thus resulting in the difference in system
times.



Finally, to improve the granularity
of security checks around transitioning
to different users or groups, I have added

the following syntax to the RBAC
system's configuration language:

user_transitions_allow user1 otheruser anotheruser
group_transitions_allow group1 othergroup anothergroup

user_transitions_deny root secretuser
group_transitions_deny root secretgroup

Notice that the ability is given to
control access to users or groups on an
inclusive or exclusive basis.  To enforce
this, checks were added to every location
in the kernel where a process' user or
group credentials change, namely the
set*id family of functions and the
routines that handle setuid and setgid
executables.  If a transition to a user or
group is not allowed, then a process'
effective, real, saved, or file system user
or group ID cannot be changed to the ID
for that user or group.

6.  CONCLUSION

In summary, these performance
and granularity changes to grsecurity's 
RBAC system have greatly increased its
ability to be a usable security system and
not just a tool box.  The methodology
applied to this project to increase
performance and scalability can be used
towards other projects as well.  Thanks
to these improvements, grsecurity's
RBAC system can now scale well in
large corporate environments, an area
where many other systems would fail.

7.  FUTURE WORK

In the areas of performance and
granularity, there is always room for
improvement.  In light of this, I would
like to expand upon my current research
with several projects to improve security

while requiring little configuration,
improve the performance of grsecurity's
learning system in disk, memory, and
CPU usage, and improve granularity in
important cases where a full system
compromise can be prevented.

First, I would like to transpose an
integrity model on top of the current
RBAC framework of grsecurity.  An
integrity model works well to prevent 
untrusted data from affecting trusted
services.  A great benefit of an integrity
model is that it requires little if any
manual configuration.  The LOMAC [6]
project will most likely serve as a guide
for this work.

Second, I would like to develop a
transparent method of sandboxing
applications.  The proposed mechanism
is as follows:  a process under the
control of the sandbox will have its file
system calls intercepted such that for any
operation that would modify the file
system, a private copy of that file is
made that is operated upon.  When the
process exits, the modified files are
stored in a compressed archive and
associated with the process.  If the
application executes another program,
the new program will be sandboxed as
well.  This has an advantage over the
chroot system call as it does not require
any source modification or the
duplication of lots of read-only code and
data.  The sandboxing will be able to be
turned on for a per-role and per-process
basis in the RBAC system.  An example



use of this would be to sandbox all users'
shells.  No files they create will exist on
the real filesystem, such as all files in
their home directories.  Additionally, this
mechanism removes an entire class of
bugs involving insecure file permissions,
as any files with improper permissions
will not be accessible by other, possibly
malicious, users. Exploiting a setuid root
application on the system will not allow
them to modify 
/etc/passwd or /etc/shadow, for instance,
since the change will only be made to
their private copies of the files.  Note
however, that sandboxing in this manner
will not solve the problem of a user
being able to read the contents of /
etc/shadow, cracking the password, and
logging in as root or another user.  For
this reason, the sandboxing will be
integrated into the RBAC system.

Additionally, I would like to
implement a similar feature to one
planned by the Linux kernel developers:
role-based resource limits.  Currently, all
resources limits except for number of
processes are enforced per-process.
Limiting of number of processes is done
on a per-user basis.  Linux kernel
developers had planned to extend some
of the other resource limits to be per-user
as well, however no work has yet been
done on this.  I would like to extend the
resource limits to apply to an entire role,
where such an extension is reasonable.
Resource limits such as maximum file
size would be acceptable candidates for
such an extension.

Granularity in the case of
applications such as XFree86 is very
important.  XFree86 uses privileged I/O
ports on the Intel Architecture and
accesses physical memory directly
through a character device provided by
Linux.  Access to privileged I/O ports is
very coarse-grained on Linux and other

UNIX-like operating systems.  Only
access to the first 1024 I/O ports are
allowed to be specifically configured
through the ioperm system call.  To
allow access to any of the remaining
64512 I/O ports, the iopl system call
must be used.  By using the iopl system
call to enable such access, immediately
all 65536 ports are allowed to be
accessed.  I plan to work with the PaX
project on extending per-port
configuration to all 65536 I/O ports.  As
for direct physical memory access, I plan
on allowing to specify within the 
RBAC configuration language, which
ranges within a file or device can be
accessed for reading or writing.  These
two changes alone greatly reduce the
previously massive security risk of
running XFree86 or other similarly
complex applications on trusted systems.

To ease configuration and give an
additional safety blanket to all
applications on the system, I propose to
add a global role to the RBAC system.
Upon every access lookup within the
RBAC system, the global role will be
consulted first, followed by the role of
the current process.  From a usability
standpoint, the global role will give the
administrator instant information about
what kind of accesses will be impossible
on the system, no matter how the rest of
the policy is configured.  It will also
reduce the amount of policy duplicated
among roles by having it stored in one
central location.

Though there is little left to be
done in the kernel portion of grsecurity's
RBAC system in terms of performance, I
plan on adding caching to access
lookups.  The reason for caching is that
though access lookups are generally O
(1), they can be as bad as O(m*n) where
m is the inheritance depth of the current



subject and n is the number of path
components of the pathname being
accessed.  Though in practice both of
these numbers are very small and
unlikely to cause any scalability issues,
caching will aid in reducing the lookup
cost of frequent accesses to the same
file.  The cache will map an inode and
device pair to the object that would
result if a full lookup were performed.
The cache will be invalidated upon
creation, deletion, and renaming.

Performance in the learning system
of grsecurity is currently a great concern.
Many users are generating learning logs
that are hundreds of megabytes large.
Attempts to analyze the learning logs
and generate a working policy out of
them result in out of memory conditions.
To alleviate these problems, I plan on
taking several approaches.  First, I would
like to change the learning reduction
code so that it is done in multiple passes.
That is, the logs will be read multiple
times, but the generated policy will not
be created and written out all at once.
The policy may be generated one role or
process at a time, where only the data
relating to that role or process will be in
memory at one time.  Second, I would
like to perform simple rule reduction
before learning logs are written to disk
by the learning daemon.  In cases of
applications like top, where pathnames
matching the regular expression /
proc/*/exe are continually accessed, I
would like to reduce those accesses to
the regular expression before being
written to disk.  This will result in huge
disk savings.  I would also like to
perform reduction at the stage before
access information is inserted into a
graph structure.  At that stage, all
accesses are sorted by filename, which
allows one to easily identify if there have
been many accesses of the same kind to
a single directory.  By reducing these

accesses before they are inserted into the
graph structure, we will greatly reduce
the amount of time required to analyze
and generate policies for a heavily used
system.

REFERENCES

[0]  Grsecurity homepage.
http://www.grsecurity.net
[1]  Grsecurity features page.
http://www.grsecurity.net/feature
s.php
[2]  Brad Spengler.  Detection,
Prevention, and Containment: A Study
of Grsecurity.
http://www.grsecurity.net/grsecur
ity-slide_files/frame.htm
[3]  PaX homepage.
http://pax.grsecurity.net
[4] NIST/ITL Bulletin, An Introduction
to Role-Based Access Control.
December, 1995.
http://csrc.nist.gov/rbac/NIST-
ITL-RBAC-bulletin.html
[5]  Ravi S. Sandhu. Lattice-Based
Access Control Models.  ACM Journals
Nov 2003. vol 26, issue 11, p9-19.
http://www.list.gmu.edu/journals/
computer/i93lbacm(org).pdf
[6]  Timothy Fraser. "LOMAC: MAC
You Can Live With," in the Proceedings
of the FREENIX Track, 2001 USENIX
Technical Conference, Boston,
Massachusetts, USA, 2001.
http://opensource.nailabs.com/lom
ac/docs/lomac-freenix01.pdf


