
PaX
(http://pageexec.virtualave.net)

The Guaranteed End of Arbitrary
Code Execution

Who am I?

 Brad Spengler

 The only grsecurity developer

 NOT a PaX developer

 Computer Engineering major, Mathematics
minor

What is PaX?

 Quite simply: the greatest advance in
system security in over a decade that
you’ve never heard of

 Less simply: It provides non-executable
memory pages and full address space
layout randomization (ASLR) for a wide
variety of architectures.

Outline

 PaX “lecture”
 SEGMEXEC

 PAGEEXEC

 KERNEXEC

 ASLR
 RANDMMAP

 RANDEXEC

 ET_DYN

 RANDKSTACK

Outline (cont.)

 How grsecurity is involved in PaX’s strategy

 Factual comparison with OpenBSD’s W^X
 ASLR comparison

 Any guarantees?

 The “subtle concept” of mprotect

 Factual comparison with Exec Shield
 ASLR comparison

 Any guarantees?

 Mprotect

PaX - SEGMEXEC

 SEGMEXEC is PaX’s implementation of per-
page non-executable user pages using the
segmentation logic of IA-32 (Intel x86
architecture) and virtual memory area
mirroring (developed by PaX).

PaX – SEGMEXEC (cont.)

 The segmentation logic is fairly straightforward:
 Data Segment (DS)
 Code Segment (CS)

 There exist these two segments for user pages
as well as kernel pages.

 PaX splits the address space down the middle:
the bottom half for data, the top for code.

 Segmentation is a “window” into the address
space

 No performance hit

PaX – SEGMEXEC (cont.)

User
Code & Data
Segments

3GB

Without SEGMEXEC

User
Code

Segment

1.5GB

User
Data

Segment

1.5GB

With SEGMEXEC

PaX – SEGMEXEC (cont.)

 PaX’s VMA mirroring involves duplicating
every executable page in the lower half of
the address space into the upper half.

 Instruction fetch attempts at addresses
located in the data segment that don’t
have any code located at its mirrored
address will cause a page fault. PaX
handles this page fault and kills the task.

PaX – SEGMEXEC (cont.)

08048000-0804c000 r-xp /home/spender/cat

0804c000-0804d000 rw-p /home/spender/cat

0804d000-08079000 rw-p

20000000-20014000 r-xp /lib/ld-2.3.2.so

20014000-20015000 rw-p /lib/ld-2.3.2.so

20015000-20016000 rw-p

2001e000-20145000 r-xp /lib/libc-2.3.2.so

20145000-2014a000 rw-p /lib/libc-2.3.2.so

2014a000-2014c000 rw-p

2014c000-202d1000 r--p /usr/lib/locale/locale-archive

5ffff000-60000000 rw-p

68048000-6804c000 r-xp /home/spender/cat

80000000-80014000 r-xp /lib/ld-2.3.2.so

8001e000-80145000 r-xp /lib/libc-2.3.2.so

08048000-0804c000 r-xp /home/spender/cat

0804c000-0804d000 rw-p /home/spender/cat

0804d000-08073000 rw-p

40000000-40014000 r-xp /lib/ld-2.3.2.so

40014000-40015000 rw-p /lib/ld-2.3.2.so

40015000-40016000 rw-p

4001e000-40145000 r-xp /lib/libc-2.3.2.so

40145000-4014a000 rw-p /lib/libc-2.3.2.so

4014a000-4014c000 rw-p

4014c000-402d1000 r--p /usr/lib/locale/locale-archive

bfffe000-c0000000 rw-p

Without SEGMEXEC

With SEGMEXEC

PaX – SEGMEXEC (cont.)

Instruction
fetch attempt at
0x08049000

Segmentation logic
translates
0x08049000 into
0x68049000

Does
0x68049000
belong to any
mapping?

Success

Violation, process
is terminated

YES

NO

PaX - PAGEEXEC

 PAGEEXEC was PaX’s first implementation of
non-executable pages.

 Because of SEGMEXEC, it’s not used anymore on
x86 (so I won’t discuss the implementation).

 Platforms which support the executable bit in
hardware are implemented under PAGEEXEC
(currently alpha, ppc, parisc, sparc, sparc64,
amd64, and ia64)

PaX - KERNEXEC

 KERNEXEC is PaX’s implementation of proper
page protection in the kernel
 ‘const’ finally means read only in the kernel

 Read-only system call table

 Read-only interrupt descriptor table (IDT)

 Read-only global descriptor table (GDT)

 Data is non-executable

 Uses the same concept of segmentation as
SEGMEXEC

 Cannot co-exist with module support (currently)

PaX - ASLR

 Full ASLR randomizes the locations of the
following memory objects:
 Executable image

 Brk-managed heap

 Library images

 Mmap-managed heap

 User space stack

 Kernel space stack

PaX – ASLR (cont.)

 Notes on amount of randomization:

 The following values are for 32bit architectures. They
are larger on 64bit architectures, though not twice as
large (since they generally don’t use 64 bits for the
address space).

 Stack – 24 bits (28 bits for argument/environment pages)

 Mmap – 16 bits

 Executable – 16 bits

 Heap – 12 bits (or 24 bits if executable is randomized also)

PaX – ASLR (cont.)

 The randomizations applied to each memory
region are independent of each other

 Because PaX guarantees no arbitrary code execution,
exploits will most likely need to access different
memory regions.

 So, if the exploit needs access to libraries and the
stack, the bits that must be guessed are the sum of
the two regions: 40 bits (or 44). The chance of such
an attack succeeding while depending on hard coded
addresses is effectively zero.

PaX – ASLR (cont.)
08048000-0804c000 r-xp /home/spender/cat

0804c000-0804d000 rw-p /home/spender/cat

0804d000-08078000 rw-p

4edaa000-4edbe000 r-xp /lib/ld-2.3.2.so

4edbe000-4edbf000 rw-p /lib/ld-2.3.2.so

4edbf000-4edc0000 rw-p

4edc8000-4eeef000 r-xp /lib/libc-2.3.2.so

4eeef000-4eef4000 rw-p /lib/libc-2.3.2.so

4eef4000-4eef6000 rw-p

4eef6000-4f07b000 r--p /usr/lib/locale/locale-archive

bf3dc000-bf3dd000 rw-p

08048000-0804c000 r-xp /home/spender/cat

0804c000-0804d000 rw-p /home/spender/cat

0804d000-08070000 rw-p

43d8c000-43da0000 r-xp /lib/ld-2.3.2.so

43da0000-43da1000 rw-p /lib/ld-2.3.2.so

43da1000-43da2000 rw-p

43daa000-43ed1000 r-xp /lib/libc-2.3.2.so

43ed1000-43ed6000 rw-p /lib/libc-2.3.2.so

43ed6000-43ed8000 rw-p

43ed8000-4405d000 r--p /usr/lib/locale/locale-

archive

b54f9000-b54fa000 rw-p

Two runs of a
binary with stack,
mmap, and heap
randomization

PaX – ASLR (cont.)

 RANDKSTACK

 Randomizes the kernel’s stack

 Randomized on each system call, so info-
leaking the randomization is useless

 Randomizes 5 bits of the stack. Brute forcing
generally shouldn’t be possible, as each
attempt will most likely crash the kernel.

PaX – ASLR (cont.)

 ET_DYN
 Special type of ELF binary (the same used for shared

libraries)

 Position independent code (PIC)

 Allows for relocation of the binary at a random
location

 Needed to achieve Full ASLR

 Requires a recompile and re-link of applications

 Adamantix and Hardened Gentoo have adopted these
changes.

PaX – ASLR (cont.)

 RANDEXEC
 Randomizes the placement of code in ET_EXEC binaries.
 Uses the same segmentation feature as SEGMEXEC.
 Code in an ET_EXEC binary is mirrored at a random location. The code

still exists as data in the data segment.
 When execution of the program enters the binary image, a page fault is

raised and analyzed.
 The analysis checks to see if the entry into the binary image was

legitimate or caused by a ret-to-libc style attack. If it was legitimate,
execution is redirected into the randomized mirror; otherwise, the
application is killed.

 RANDEXEC can cause false positives in certain applications. Also since
it does not randomize data in the binary, it is not a replacement for
ET_DYN. RANDEXEC was developed merely as a proof of concept.

How grsecurity is involved in PaX’s
strategy

 To truly achieve the guarantee of no execution of
arbitrary code, grsecurity must be used. The ACL/RBAC
system or TPE can be used to ensure that an attacker
can’t create a file with his payload in it, and mmap that
executable via a ret-to-libc attack on the process.

 Protection against brute-forcing attacks is also part of
PaX’s strategy. This is handled within grsecurity’s
ACL/RBAC system by either denying execution of the app
for a single user or for everyone (depending on whether
the process was a network daemon or not).

Factual Comparison of PaX and
W^X

 PaX

 Guaranteed no execution of
arbitrary code

 24/28 bit stack
randomization

 16 bit mmap randomization

 Completely implemented in
the kernel. Can be
implemented transparently
and retain binary
compatibility with all
distributions.

 W^X

 No guarantees about
arbitrary code execution

 14 bit stack randomization

 16 bit mmap randomization

 Required a complete
recompilation/re-linking of
user space. Broke binary
compatibility with all
previous OpenBSD
releases.

Factual Comparison of PaX and
W^X (cont.)

 PaX

 Cuts usable address space
in half (though this can be
changed if it becomes a
problem)

 Two methods for
randomizing the executable
base (though ET_DYN is
the correct method)

 Support for non-executable
and read-only kernel pages
on i386

 W^X

 More usable address space,
but fragmented

 As of the latest release, no
method for randomizing
the executable base

 No support for non-
executable or read-only
kernel pages on i386

Factual Comparison of PaX and
W^X (cont.)

 PaX

 Per-system call kernel stack
randomization

 Brk-managed heap
randomization

 Ability to enable/disable all
features on a per binary
basis

 No read-only
GOT/PLT/.ctors/.dtors (yet)

 W^X
 No kernel stack

randomization

 No brk-managed heap
randomization

 No method of toggling
features on a per
binary basis

 Read-only
GOT/PLT/.ctors/.dtors

Factual Comparison of PaX and
W^X (cont.)

 PaX
 Supports the same user

space features on i386,
alpha, ppc, parisc, sparc,
sparc64, amd64, and ia64.

 Supports a per-page
implementation of non-
executable pages on ppc

 W^X
 Supports the same user

space features on i386,
alpha, ppc, parisc, sparc,
and sparc64. (giving
benefit of the doubt here
as some work is yet to be
done on ppc, possibly
others)

 Supports a segmentation-
based implementation of
non-executable pages on
ppc that cannot guarantee
W^X on large memory
loads.

Functional Comparison of PaX and
W^X

 As noted, there are many differences between PaX and
W^X, but what do these technical differences mean in
terms of effectiveness against real-life exploit scenarios?
 W^X will not prevent exploitation of the kernel

 The .bss and heap can be used in exploits to store data for the
payload at a known location on OpenBSD

 OpenBSD’s mmap randomization is somewhat useless at
preventing ret-to-libc style attacks since the PLT in the
executable image is not at a randomized location and will allow
for a similar attack.

 On OpenBSD, attackers are not limited to the code that resides
in a task to complete their exploit.

Rebuttal of arguments for W^X

 Claim:
 “randomizing load order indirectly leads to random

addresses. sshd loads 8 libraries. 8! is 40000,
meaning if you have some return to libc attack, libc
could be at one of many many different locations.
in short:
attack type: return to libc.
solution: move libc.”

tedu@openbsd.org :
http://www.deadly.org/article.php3?sid=20031009110
855&mode=flat

Rebuttal of arguments for W^X
(cont.)

 Rebuttal:

 The statement that random load order of 8 libraries
results in 40,000 possible orders does not have a
direct relation to security. The assumption is made
that for a successful attack, one would need
data/code from each of the 8 libraries, when in
reality, only one is needed. So in the presence of
only random load order, focusing the attack on the
first library will give you a 1 in 8 chance of success.
This is hardly anything that can be called security.

Rebuttal of arguments for W^X
(cont.)

 Claim: OpenBSD cannot protect against attacks
using mprotect because it would violate POSIX,
and OpenBSD does not violate POSIX.
 > > We don't break anything that standards or

defacto standards require. (Theo de Raadt)
> You do break POSIX as pointed out above. (PaX
Team)
False. Now go away. (Theo de Raadt)

http://groups.google.com/groups?selm=200304171509.
h3HF9N5t023465%40cvs.openbsd.org.lucky.openbsd.
misc&oe=UTF-8&output=gplain

Rebuttal of arguments for W^X
(cont.)

 Rebuttal:

 OpenBSD violates POSIX

 “Indeed. None of the *BSD systems currently checks for
PROT_EXEC in this case.”

miod@openbsd.org agreeing to POSIX violation in mmap()

http://www.deadly.org/article.php3?sid=20031009110855&mo
de=flat

 OpenBSD’s POSIX compliance has not been verified
formally or informally by any third party. Thus their
claims of compliance are opinions and not fact.

Rebuttal of arguments for W^X
(cont.)

 PaX does not violate POSIX by restricting
mprotect()

 “If an implementation cannot support the
combination of access types specified by prot, the
call to mprotect() shall fail.”

http://www.opengroup.org/onlinepubs/007904975/f
unctions/mprotect.html

Rebuttal of arguments for W^X
(cont.)

 Claim: PaX “goes too far” and breaks applications. W^X
does not break anything.
 > That's when you modify non-compliant software to bring it in

line
> with what the standard says. (PaX Team)
False. You go too far. (Theo de Raadt)
“Our W^X changes break nothing.” (Theo de Raadt)

http://groups.google.com/groups?selm=200304171509.h3HF9N5t0
23465%40cvs.openbsd.org.lucky.openbsd.misc&oe=UTF-
8&output=gplain

http://groups.google.com/groups?selm=200304170012.h3H0C45t0
25999%40cvs.openbsd.org.lucky.openbsd.misc&oe=UTF-
8&output=gplain

Rebuttal of arguments for W^X
(cont.)

 Rebuttal:
 OpenBSD breaks binary compatibility, PaX does not.

 Binaries for OpenBSD that were incorrect to begin with (such as
assuming malloc() returns executable memory) will be broken
under W^X and have no way to be corrected, since they do not
support per-binary disabling of features. In PaX, a single command
can correct the problem. This is a secure-by-default design.

 The upstream release of XFree86 < 4.3 assumed malloc()
returns executable memory for its module loader. Some point to
this as PaX breaking XFree86, when it was a bug in XFree86 that
simply was not important before. There are other similar bugs
involving libGL and various drivers. Redhat fixed these bugs in
XFree86 when Exec Shield was developed.

Additional comments on PaX and
W^X

 OpenBSD has yet to release any sort of formal documentation on
the design and implementation of W^X. PaX’s has been available at
http://pageexec.virtualave.net/docs/

 There has been no public discussion of any kind of attack model for
W^X, while PaX’s is very well defined. PaX was developed to defeat
entire classes of exploits. W^X provides no guarantees and
seemingly attempts only at picking away at several kinds of bugs
(such as linear stack overflows) through the use of many assorted
features. As shown earlier, the merits of some of these features are
debatable, and it makes it increasingly difficult for OpenBSD to ever
have any kind of toggling feature. Such a toggling feature is
important not only to keep binary compatibility but also for easier
debugging.

Factual comparison of PaX and
Exec Shield

 For the most part, Exec Shield and W^X are similar (in that they both
provide a subset of the features of PaX), so I will not give a point-by-point
analysis. However, some differences between PaX and Exec Shield are:
 Exec Shield uses less randomization than PaX in every region, though it

randomizes the same areas.
 To randomize the executable image, Exec Shield makes use of Redhat’s PIE

(Position Independent Executable).
 Exec Shield cannot even guarantee that when a task is fully loaded in memory,

that there do not exist memory regions that are both writable and executable,
even if an application did not request such mappings.

 Exec Shield recently discovered a bug (an off-by-one page), due to someone
running paxtest on an Exec Shield machine, that resulted in a page of memory
being writable and executable that was assumed otherwise. This bug was
present ever since the first release of Exec Shield.

 Exec Shield does nothing against kernel exploitation

References

 OpenBSD http://www.openbsd.org

 PaX http://pageexec.virtualave.net

 Exec Shield http://people.redhat.com/mingo/exec-shield/

 Hardened Gentoo http://www.gentoo.org/proj/en/hardened/

 Adamantix http://www.adamantix.org

http://www.openbsd.org/
http://pageexec.virtualave.net/
http://people.redhat.com/mingo/exec-shield/
http://www.gentoo.org/proj/en/hardened/
http://www.adamantix.org/

Questions?

 Thanks for attending and your interest in
PaX. With whatever time remaining, I’d
be glad to answer any questions about
PaX or grsecurity.

