
The Case For

Brad Spengler

Open Source Security, Inc.

2012

Overview

 What is grsecurity?

 History

 Why grsecurity exists

 Recent advances

 Response strategy

 Future improvements

What is grsecurity?

 Kernel patch for Linux 2.6.32, 3.2, and the

current “stable” Linux

 Provides access control, auditing, chroot

hardening, anti-bruteforcing, anti-

infoleaking

 Includes PaX for defense against

exploitation of memory corruption vulns

(and more)

What is grsecurity? (cont.)

 Goals of detection, prevention,

containment

 Drive up exploit development costs,

hopefully require specific targeting

 Psychology of uncertainty – attempt using

0day and risk losing not only the vuln but

exploit vectors used?

What is grsecurity? (cont.)

 Ideal for webhosting environments

 First work was in webhosting, so I

experienced the problems first-hand

 Very difficult security environment, can’t just

throw Apache in a VM

 Generally years ahead of mainstream

security

 See http://forums.grsecurity.net/viewtopic.php?f=7&t=2574for

some examples

History

 Feb 18, 2000 - First release

 then called “GRKERNSEC”

 Poor port of Openwall to 2.4 kernels

 2.4 unsupported by Openwall at the time

 2001 – Included PaX

 2001 – Michael Dalton creates “Oblivion”

ACL system for grsecurity

History (cont.)
 Aug 3, 2002 – I create learning mode for ACL

system

 Sept 2002 – Anti-bruteforcing, IP
tagging/tainting

 April 6, 2003 – RBAC system, more advanced
learning (full system policies)

 2004 - HIDESYM

 2009 – USERCOPY, limited size overflow
prevention, MODHARDEN, fptr constifying

 See http://grsecurity.net/news.php#develup

Why grsecurity Exists

 Because a few hours over a couple

months nets:

Why grsecurity Exists (cont.)
“I'll be curious to see
what the CVE statistics
are like for the kernel
this year when they get
compiled next year --
I'm predicting that
when someone's
watching the sleepy
watchers, a more
personal interest is
taken in doing the job
that you're paid to do
correctly.” –
exp_moosecox.c, 2009

Why grsecurity Exists (cont.)
 Culture of anti-security upstream

 “I literally draw the line at anything that is simply
greppable for. If it's not a very public security issue
already, I don't want a simple "git log + grep" to help find
it.” – Linus Torvalds, LKML

 “I just committed this to mainline, and it should also go
into stable. It's a real DoS fix, for a trivial oops (see the
security list for example oopser program by Oleg), even
if I didn't want to say that in the commit message ;)” –
Linus Torvalds, not LKML

 “I have tried to camouflage the security fix a bit by
calling it a PROT_NONE fix and using pte_read(), not
pte_user() (these are the same on x86). Albeit there's no
formal embargo on it, please consider it embargoed
until the fix gets out.” – Ingo Molnar, 2005, private
bugtraq for RHEL

Why grsecurity Exists (cont.)
 Vendor-sec compromised at least twice

 2005, 2011 (finally shut down)

 No accountability, sat on IA64 hardware DoS for
two years

 Embargoed vulns basically guaranteed head-start
for blackhats

 Replacement list is better, but lessons learned from
vendor-sec show failure of reactive security

 Users disempowered when information is
controlled by a few (see
http://blog.xen.org/index.php/2012/08/23/disclosu
re-process-poll-results/, decision to pre-release to
“genuine cloud providers”)

Why grsecurity Exists (cont.)

 Eight “stable” kernel trees

 Upstream focus is on adding new features

(with new vulns)

 From series of infoleak vulns found by

Mathias Krause (minipli):

 11 affected 2.6.32 (released 2010)

 15 affected 3.2 (released Jan 2012)

 17 affected 3.5 (released July 2012)

Why grsecurity Exists (cont.)
 Vuln is DoS if not clever enough to exploit

 See sudden spike in 2009 of privesc

 Generally no defense in depth on the kernel
level
 beyond copying grsecurity, that is

 Find bug / patch bug cycle
 Whitelist vs blacklist

 Exploit vectors vs vulnerabilities

 The “many eyes” of open source are blind,
uninterested, or selling to governments for
profit (it’s not the 1992 AD scene anymore)

Why grsecurity Exists (cont.)
 3.x uname stack infoleak fixed in grsec Sept

19th, mentioned in both grsec and PaX
changelogs

 “Fix 3.x uname emulation infoleak” in grsec

 “fixed kernel stack disclosure in sys_newuname
affecting linux 3.x” in PaX

 Not spotted for several weeks by anyone else,
notified Google

 Patch submitted recently, finally in Linus tree
Oct 19

 Many eyes, right?

Recent advances

 Since 2011:

 GRKERNSEC_BRUTE

 Bruteforce deterrence for suid/sgid binaries

 GRKERNSEC_MODHARDEN

 mount via root can only auto-load filesystem

modules

 Netdev code can only auto-load netdev

modules

 No udisks auto-load

Recent advances (cont.)

 Since 2011:

 GRKERNSEC_KERN_LOCKOUT

 Attack by uid 0 or in interrupt handler, panic()

 Attack by non-priv user, ban until reboot

 PAX_USERCOPY

 Whitelisting of slab caches that can be used

for copies to/from userland

 Ex: no copying to/from cred, task, dentry

structs

Recent advances (cont.)

 Since 2012:

 GRKERNSEC_PTRACE_READEXEC

 Disallow ptracing unreadable binaries

 GRKERNSEC_SETXID

 Uid 0 setuid to non-root, change performed
across all threads

 Required per-arch changes

 GRKERNSEC_SYMLINKOWN

 Race-free implementation of Apache’s
SymLinksIfOwnerMatch

Recent advances (cont.)

 Since 2012:

 GRKERNSEC_PROC_MEMMAP

 Per-CPU, non-overflowable exec ID to ensure
sensitive /proc entries can only be
read/written by the same process that
opened them

 Arg/env pages limited to 512KB for suid/sgid
binaries (defuse entropy reduction)

 RLIMIT_STACK bounded, 3GB personality
cleared to prevent alternate memory layout
for suid/sgid binaries

Recent advances (cont.)

 Since 2012:

 GRKERNSEC_HIDESYM

 Reused PAX_USERCOPY slab cache
whitelisting code, made generic caches

 Made seqfile code allocate out of whitelisted
generic cache

 Added check to *printf() that sanitizes kernel
pointers printed with %p in buffers allowed to
be copied to userland

 Prevented useful leak via /proc/net/ptype (hi
Dan!)

Recent advances (cont.)

 Backported ~110 security fixes to the

2.6.32.59 kernel in 2012 that upstream

missed

 Notified maintainer, who added ~70 of

these to 2.6.32.60 based on my changelogs

 Number of backports are even higher for

newer kernels, as many vulns are in code

recently introduced

Response strategy
 Motivation for many advances: spite

 Scorched-earth exploit response

 “A scorched earth policy is a military strategy or
operational method which involves destroying
anything that might be useful to the enemy
while advancing through or withdrawing from
an area.” - Wikipedia

 Upstream kills the vulnerability exploited, we kill
exploit vectors found along the way

 Must be weighed against produced
disincentive to publish, as this harms reactive
security users more than us

Response strategy (cont.)

 Stackjacking (2011)

 30 minutes advance notice, killed in a week
before repeat presentation

 Original presentation “demo” needed an
artificial, best-case arbitrary-write and
infoleak vuln

 6 enhancements made to grsecurity/PaX
which have been improved further since

 A year later, still presenting on the same
techniques that were “promptly
demolished by the PaX Team” – Jon
Oberheide

Response strategy (cont.)
 Sudo format string vuln (VNSecurity, 2012)

 6 improvements made to grsecurity/PaX
 Most already mentioned
 Increased heap randomization in higher order bits
 Increased stack randomization in lower order bits on

x64
 Small randomization in gap between program stack

and arg/env strings

 Despite all this, however, VNSecurity still able to
create a one-shot exploit, aided by some unique
sudo characteristics
 Very nice work! See the progression here:

http://www.vnsecurity.net/2012/02/exploiting-sudo-
format-string-vunerability/

 Short term vs long term strategy

Future improvements

 Kernel self-protection in place pushes
many exploits into the code-reuse +
infoleak space

 Drive up complexity of code reuse, force
some data attacks into this space (e.g.,
cred struct modification)

 Eliminate known offsets/heuristic scanning
as a technique against important kernel
targets (GCC plugin)

Future improvements (cont.)

 Make it easier – official, unique kernel
packages without distro kernel drawbacks

 RBAC improvements

 Improved learning system using real machine
learning algorithms instead of heuristics

 Not just reduction of path accesses to
directories, but regular expression learning for
more usable policies across software updates

 Automatically mark PaX flags for problem
apps with a simple configurable daemon

Questions/Requests?

 Feel free to email me at

spender@grsecurity.net

 http://www.grsecurity.net

 Thanks to my sponsors for their support

 Most of all, thanks to pipacs and Emese 

