
The Case For

Brad Spengler

Open Source Security, Inc.

2012

Overview

 What is grsecurity?

 History

 Why grsecurity exists

 Recent advances

 Response strategy

 Future improvements

What is grsecurity?

 Kernel patch for Linux 2.6.32, 3.2, and the

current “stable” Linux

 Provides access control, auditing, chroot

hardening, anti-bruteforcing, anti-

infoleaking

 Includes PaX for defense against

exploitation of memory corruption vulns

(and more)

What is grsecurity? (cont.)

 Goals of detection, prevention,

containment

 Drive up exploit development costs,

hopefully require specific targeting

 Psychology of uncertainty – attempt using

0day and risk losing not only the vuln but

exploit vectors used?

What is grsecurity? (cont.)

 Ideal for webhosting environments

 First work was in webhosting, so I

experienced the problems first-hand

 Very difficult security environment, can’t just

throw Apache in a VM

 Generally years ahead of mainstream

security

 See http://forums.grsecurity.net/viewtopic.php?f=7&t=2574for

some examples

History

 Feb 18, 2000 - First release

 then called “GRKERNSEC”

 Poor port of Openwall to 2.4 kernels

 2.4 unsupported by Openwall at the time

 2001 – Included PaX

 2001 – Michael Dalton creates “Oblivion”

ACL system for grsecurity

History (cont.)
 Aug 3, 2002 – I create learning mode for ACL

system

 Sept 2002 – Anti-bruteforcing, IP
tagging/tainting

 April 6, 2003 – RBAC system, more advanced
learning (full system policies)

 2004 - HIDESYM

 2009 – USERCOPY, limited size overflow
prevention, MODHARDEN, fptr constifying

 See http://grsecurity.net/news.php#develup

Why grsecurity Exists

 Because a few hours over a couple

months nets:

Why grsecurity Exists (cont.)
“I'll be curious to see
what the CVE statistics
are like for the kernel
this year when they get
compiled next year --
I'm predicting that
when someone's
watching the sleepy
watchers, a more
personal interest is
taken in doing the job
that you're paid to do
correctly.” –
exp_moosecox.c, 2009

Why grsecurity Exists (cont.)
 Culture of anti-security upstream

 “I literally draw the line at anything that is simply
greppable for. If it's not a very public security issue
already, I don't want a simple "git log + grep" to help find
it.” – Linus Torvalds, LKML

 “I just committed this to mainline, and it should also go
into stable. It's a real DoS fix, for a trivial oops (see the
security list for example oopser program by Oleg), even
if I didn't want to say that in the commit message ;)” –
Linus Torvalds, not LKML

 “I have tried to camouflage the security fix a bit by
calling it a PROT_NONE fix and using pte_read(), not
pte_user() (these are the same on x86). Albeit there's no
formal embargo on it, please consider it embargoed
until the fix gets out.” – Ingo Molnar, 2005, private
bugtraq for RHEL

Why grsecurity Exists (cont.)
 Vendor-sec compromised at least twice

 2005, 2011 (finally shut down)

 No accountability, sat on IA64 hardware DoS for
two years

 Embargoed vulns basically guaranteed head-start
for blackhats

 Replacement list is better, but lessons learned from
vendor-sec show failure of reactive security

 Users disempowered when information is
controlled by a few (see
http://blog.xen.org/index.php/2012/08/23/disclosu
re-process-poll-results/, decision to pre-release to
“genuine cloud providers”)

Why grsecurity Exists (cont.)

 Eight “stable” kernel trees

 Upstream focus is on adding new features

(with new vulns)

 From series of infoleak vulns found by

Mathias Krause (minipli):

 11 affected 2.6.32 (released 2010)

 15 affected 3.2 (released Jan 2012)

 17 affected 3.5 (released July 2012)

Why grsecurity Exists (cont.)
 Vuln is DoS if not clever enough to exploit

 See sudden spike in 2009 of privesc

 Generally no defense in depth on the kernel
level
 beyond copying grsecurity, that is

 Find bug / patch bug cycle
 Whitelist vs blacklist

 Exploit vectors vs vulnerabilities

 The “many eyes” of open source are blind,
uninterested, or selling to governments for
profit (it’s not the 1992 AD scene anymore)

Why grsecurity Exists (cont.)
 3.x uname stack infoleak fixed in grsec Sept

19th, mentioned in both grsec and PaX
changelogs

 “Fix 3.x uname emulation infoleak” in grsec

 “fixed kernel stack disclosure in sys_newuname
affecting linux 3.x” in PaX

 Not spotted for several weeks by anyone else,
notified Google

 Patch submitted recently, finally in Linus tree
Oct 19

 Many eyes, right?

Recent advances

 Since 2011:

 GRKERNSEC_BRUTE

 Bruteforce deterrence for suid/sgid binaries

 GRKERNSEC_MODHARDEN

 mount via root can only auto-load filesystem

modules

 Netdev code can only auto-load netdev

modules

 No udisks auto-load

Recent advances (cont.)

 Since 2011:

 GRKERNSEC_KERN_LOCKOUT

 Attack by uid 0 or in interrupt handler, panic()

 Attack by non-priv user, ban until reboot

 PAX_USERCOPY

 Whitelisting of slab caches that can be used

for copies to/from userland

 Ex: no copying to/from cred, task, dentry

structs

Recent advances (cont.)

 Since 2012:

 GRKERNSEC_PTRACE_READEXEC

 Disallow ptracing unreadable binaries

 GRKERNSEC_SETXID

 Uid 0 setuid to non-root, change performed
across all threads

 Required per-arch changes

 GRKERNSEC_SYMLINKOWN

 Race-free implementation of Apache’s
SymLinksIfOwnerMatch

Recent advances (cont.)

 Since 2012:

 GRKERNSEC_PROC_MEMMAP

 Per-CPU, non-overflowable exec ID to ensure
sensitive /proc entries can only be
read/written by the same process that
opened them

 Arg/env pages limited to 512KB for suid/sgid
binaries (defuse entropy reduction)

 RLIMIT_STACK bounded, 3GB personality
cleared to prevent alternate memory layout
for suid/sgid binaries

Recent advances (cont.)

 Since 2012:

 GRKERNSEC_HIDESYM

 Reused PAX_USERCOPY slab cache
whitelisting code, made generic caches

 Made seqfile code allocate out of whitelisted
generic cache

 Added check to *printf() that sanitizes kernel
pointers printed with %p in buffers allowed to
be copied to userland

 Prevented useful leak via /proc/net/ptype (hi
Dan!)

Recent advances (cont.)

 Backported ~110 security fixes to the

2.6.32.59 kernel in 2012 that upstream

missed

 Notified maintainer, who added ~70 of

these to 2.6.32.60 based on my changelogs

 Number of backports are even higher for

newer kernels, as many vulns are in code

recently introduced

Response strategy
 Motivation for many advances: spite

 Scorched-earth exploit response

 “A scorched earth policy is a military strategy or
operational method which involves destroying
anything that might be useful to the enemy
while advancing through or withdrawing from
an area.” - Wikipedia

 Upstream kills the vulnerability exploited, we kill
exploit vectors found along the way

 Must be weighed against produced
disincentive to publish, as this harms reactive
security users more than us

Response strategy (cont.)

 Stackjacking (2011)

 30 minutes advance notice, killed in a week
before repeat presentation

 Original presentation “demo” needed an
artificial, best-case arbitrary-write and
infoleak vuln

 6 enhancements made to grsecurity/PaX
which have been improved further since

 A year later, still presenting on the same
techniques that were “promptly
demolished by the PaX Team” – Jon
Oberheide

Response strategy (cont.)
 Sudo format string vuln (VNSecurity, 2012)

 6 improvements made to grsecurity/PaX
 Most already mentioned
 Increased heap randomization in higher order bits
 Increased stack randomization in lower order bits on

x64
 Small randomization in gap between program stack

and arg/env strings

 Despite all this, however, VNSecurity still able to
create a one-shot exploit, aided by some unique
sudo characteristics
 Very nice work! See the progression here:

http://www.vnsecurity.net/2012/02/exploiting-sudo-
format-string-vunerability/

 Short term vs long term strategy

Future improvements

 Kernel self-protection in place pushes
many exploits into the code-reuse +
infoleak space

 Drive up complexity of code reuse, force
some data attacks into this space (e.g.,
cred struct modification)

 Eliminate known offsets/heuristic scanning
as a technique against important kernel
targets (GCC plugin)

Future improvements (cont.)

 Make it easier – official, unique kernel
packages without distro kernel drawbacks

 RBAC improvements

 Improved learning system using real machine
learning algorithms instead of heuristics

 Not just reduction of path accesses to
directories, but regular expression learning for
more usable policies across software updates

 Automatically mark PaX flags for problem
apps with a simple configurable daemon

Questions/Requests?

 Feel free to email me at

spender@grsecurity.net

 http://www.grsecurity.net

 Thanks to my sponsors for their support

 Most of all, thanks to pipacs and Emese

