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Abstract

Recent literature demonstrates that the network structure of a hyperlink environment can
serve as an effective source for inferring the importance of content in documents. One
such connectivity-analysis algorithm, HITS, determines document importance based upon
the hyperlink structure of the Web. In order to compensate for the problems of a pure
connectivity-analysis algorithm, we develop and test an algorithm based upon HITS that
also considers document content. We investigate whether incorporating the similarity of
documents joined by links modifies how the importance of documents is determined. While
using similarity does not always compensate for existing problems in pure connectivity-
analysis algorithms, similarity provides additional insight into why certain problems exist.
The results also demonstrate that importance in our algorithm is often biased by the struc-
ture and layout of documents.
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1 Introduction

"Gentlemen, start your search engines." [16]

The amount of information at our fingertips—on the Web, in libraries, in reference data-
bases, etc.—is increasing every day at an enormous rate. In 1998, the Web was estimated
at 800 million pages, composed of roughly 15 TB of actual content (with roughly 30% of
this as text). [22] The size of the web has been increasing exponentially.

Search engines are an important development as a means to access such a large body
of data. The number of pages that search engines index has grown as well. Figure 1 shows
the recent growth in the quantity of search engine indexes.

Figure 1: Search Engine Index Sizes [6]
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Google! is one of the more popular Web search engines, and with roughly 706 million
pages indexed today, it has the largest index of the Web.

The size of an index is important, as it increases the probability that a user will find
desired information. It is also important to consider how a search engine determines what
information is important. If one searches the Web for “Internet”, one is bound to find
many results. An algorithm will rank these results based upon the importance of the doc-
uments. One type of approach examines the content of the documents and determines
importance accordingly; for example, importance could be determined by frequency of the

"http://www.google.com



word “Internet”. Another approach uses the topology and connectivity of the documents to
determine importance. The Hyperlink-Induced Topic Search (HITS) algorithm is one such
connectivity-analysis algorithm. For pages on the Web, HITS infers document importance
from hyperlinks, and ranks a set of pages accordingly. [20]

The research reported in this paper focuses on improving the HITS algorithm by includ-
ing similarity information. Weights are assigned to all hyperlinks based upon the similarity
of the source and destination pages. Similarity is determined using term vectors and other
classic information retrieval techniques.

The HITS algorithm is modified to consider only a subset of the links as input. We call
this new algorithm HITS-SW, as it incorporates similarity weighting into the original HITS
algorithm. HITS-SW takes an additional parameter that describes the range of similarity
weights that should be considered. (HITS is logically HITS-SW with the complete range of
similarity weights considered.)

Dozens of queries have been ranked with HITS-SW using links weighted greater than
(hi) and less than (lo) the median weight value. Each query has also ranked with HITS-
SW using randomly assigned similarity weights to act as a control. Quantitative metrics
developed to compare the differences in orderings show distinct differences between the
randomly-assigned weights, hi, and lo HITS-SW rankings.

Conclusions include:

e The problem of document clustering in HITS still persists in HITS-SW.
e Many HITS rankings are most similar to o HITS-SW rankings.

e HITS-SW uses similarity weights often focused on the similarity in structure and
layout between documents and not actual content. Thus, pages produced from the
same layout template will often be considered very similar even if the actual content
varies.



2 Guide to the Literature
Or, How does HITS-SW fit into a search engine?

There are several disparate issues related to an operating search engine. Fundamentally,
they include providing an interface for the user to interact with a search service; designing
algorithms to catalog, organize, and retrieve documents; architecting a system to scale with
massive quantities of data; and considering how best to determine whether such a service
provides good results.

2.1 User Interface

From the user’s perspective, a search engine like Yahoo? provides an intermediary, directory-
like organization of data. Each document, categorized by humans, allows the user to browse
documents much like he would in the shelves of a library. (Alternatively, the user can jump
directly to a category, by entering a query for the category but the principle is the same.)

A search engine such as Google’s primary interface is a “content-query” interface to the
data. Users are allowed to enter phrases describing the content of the desired documents.
Then the software determines which documents are relevant and the relative importance of
each document.

While both styles allow the user to retrieve information, the interface design—an impor-
tant part of an operating search engine-will not be the focus of this paper.

2.2 Gathering Documents for a Collection

In libraries there is logically one means for adding more content to the universe—i.e.,
total collection. For example, the librarian who selects new books for a library has the
responsibility of entering a record into the card catalog. In the current WWW model, there
are many publishers of information. Each webmaster manages the pages for his domain,
while each individual manages the data on his homepage. As such, there are many ways
to add new information to the universe of content. Thus, while there is no centralized
mechanism for loading data into search engines, the process is a controlled, albeit manual,
process. Two approaches include:

1. Publishers can notify search engines of new content to be indexed.

2. Search engines can automatically seek out new content.

If the first approach were followed universally, search engines would contain solely those
pages actively being promoted by publishers.? Alternatively, consistent application of the
second approach would result in significant coverage gaps as many pages would escape
notice.

Search engines act as spiders on the Web and collect information. This crawling pro-
cess can be accomplished by depth- and breadth-first searches. Figure 2 provides a simple
framework for a spider.

2http://www.yahoo.com

3The cynical reader may claim that the current Web reflects this. Indeed, many search engines have a
significant bias towards self-promoted pages, and this bias varies greatly between different search engines.
(Are the promoted pages better? Perhaps.) Note that many companies provide search functionality purely
from an advertising revenue model. Companies must weigh integrity of results with preferential treatment
to those providing an income stream.



Figure 2: Pseudocode for a simple spider

For each known, but un-indexed document i {
Retrieve 7, and store the content for future searching
For each link in ¢ to other documents ji ... jn {
if j is an unindexed document {
add j to set of known documents
}

Mark document ¢ as indexed

As it becomes less feasible to construct a complete index (in terms of the number of pages
indexed), the quality of an index becomes more important. Recent research into algorithms
to approximate a complete index and quantify the quality of the approximation of an index
are particularly useful with respect to new and more efficient methods of crawling. [19]
Some of the current literature describes ways to crawl the Web in a more efficient manner.
Crawling is a resource-intensive process, especially considering that a spider must recrawl
content periodically. Although one could await improvements in the speed of computer
hardware, it is better to pursue a different algorithmic approach to crawling as the growth
of documents to index rivals that of the improvements in computer hardware.

The design of a good crawler presents many challenges. Externally, the crawler
must avoid overloading Web sites or network links as it goes about its business
... Internally, the crawler must deal with huge volumes of data. Unless it has
unlimited resources and time, it must carefully decide what URLs to scan and
in what order. The crawler must also decide how frequently to revisit pages it
has already seen, in order to keep its client informed of changes on the Web. [14]

One approach prioritizes the unvisited pages in the queue based upon the expected
importance of the page. The assumption is that there will never be enough resources to
crawl all of the Web, and certain pages are more important either because of their popularity
or their ability to lead to discovery of additional important pages. Research suggests that
such an approach increases the rate of crawl when compared to random- or breadth- ordered
searches. [14]

Related work attempts to focus on a spider providing more than just the ability to crawl
the Web. One such model would allow a spider to categorize documents automatically. The
ARC system, for example, categorizes pages based upon their content as well as their
perceived importance. [12]

2.3 Searching Through a Collection for Related Documents

For a user to issue a query, the first step is to translate a question from prose into a form
that can be understood by a computer. This is often done with the assistance of either a
person skilled at this art (e.g., a librarian) or by software that attempts to distill a natural
language query into a Boolean form. Alternatively, the user can directly enter a number
of key phrases or words with Boolean connectors like AND, OR, and NOT to describe the
information that is desired.

Of course, a less skilled user might not choose the most relevant query terms. This is the
so-called “vocabulary problem,” as a user might not have the vocabulary to describe the
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desired information accurately. The classic solution is to store lists of synonyms for query
terms as appropriate. Systems that update dynamically by defining new synonyms based
upon past user success provide an additional improvement. [17]

2.4 Ranking Documents According to Relevance

The assumption is that a database will return a set of related documents based upon a
set of Boolean connected keywords. An interesting challenge is to determine which of these
documents are more important than others.

One classic approach is to rank documents based upon the frequency of the search terms
appearing in the set of documents; that is, a document that contains the search terms twenty
times would be considered more relevant than a document with only one occurrence of such
a term. The advantage of this approach is that it is easy to implement and that minimal
computation is required to determine importance.

However, such an approach will not produce unbiased results. It is quite easy to influence
such a computation. Adding text (and in the case of HTML, making such text invisible
to the casual user) that includes popular search terms many times in an effort to draw
attention and advertise is a popular technique on the Web.

Another approach to ranking involves humans viewing the content of documents and
individually determining their importance. However, the amount of information on the
Web is typically too great to rank manually, and such a process leads to biasing. Thus, the
majority of the current ranking schemes involve automated, algorithmic systems. These infer
the importance of documents based upon the structure and organization of the Internet.

A number of different projects have investigated the structure of the Internet. Pirolli,
et al. were some of the first to investigate the structural relationship between similar doc-
uments. Their work suggested that one could infer association by the links between doc-
uments on the Web. Such analysis could be more complex than simply observing direct
hyperlinks. A more direct method would involve one reviewing the number of incoming and
outgoing links for documents as a means for relating and categorizing documents. [23]

2.4.1 The HITS and PageRank algorithms

Two important methods of structure-inferred ranking were developed in the late 1990s. One
hallmark of structure-inferred ranking was the Hyperlink-Induced Topic Search (HITS) al-
gorithm, as developed by Jon Kleinberg. [20] The other is PageRank, developed by Brin
and Page, and the current technology basis for Google. [9] Both attempt to discern which
documents—i.e., pages on the Web—are the most relevant by using the surrounding hy-
perlink structure of the Web.

Kleinberg’s assertion is that relevance can be discerned by determining which docu-
ments carry the most authority. The hypothesis is that “[h]yperlinks encode a considerable
amount of latent human judgment” and “this type of judgment is precisely what is needed
to formulate a notion of authority.” [20] Both are based upon the assumption that when a
document cites another (where on the Internet, a citation is a hyperlink between pages),
there is a good reason for the citation. This latent reason provides a clue to which documents
are important. One might look at all hyperlinks and observe which pages are cited most
often, with the understanding that a hyperlink citation is a vote. Essentially, those docu-
ments cited most frequently are considered to be ‘better’ authorities than those documents
that are cited less often.



PageRank proposes a ranking scheme based upon weight-propagation and eigenvectors,
where a user randomly surfs the Web. The user selects an outgoing link for a given page
uniformly at random or, with a probability p, decides to jump to a new page selected
uniformly at random from the entire Web. The PageRank is the amount of time the user
spends on a specific page, given such a random process. The amount of time ‘spent’ on a
given page will go up if there are more ways to arrive at a given page. Thus, this method
measures the number of citations for a given page.

HITS defines two scores for documents: an ‘authority’ score and a ‘hub’ score. Doc-
uments can serve as authorities, and contain valuable content, or be hub documents and
link to valuable content. In addition to searching for documents of high authority, HITS
looks for documents that serve as the best hubs. While more frequently cited documents
often receive a higher authority score, the documents that cite the authoritative documents
receive higher hub scores. In turn:

1. documents that are cited by documents with higher hub scores receive higher authority
scores

2. documents that cite those with higher authority scores are in turn considered to have
higher hub scores

Although this is a bit cyclic in definition, it can be mathematically expressed in practice:
HITS’s goal is to assign a hub value and an authority value for each page. Higher values
denote that pages are better hubs and are more authoritative, respectively. HITS does this
by the algorithm in figure 3. A collection of hyperlinked pages is viewed as a directed graph
G = (V,E). The set of pages correspond to the vertices and the hyperlinks serve as the
directed edges. A guess at the initial set of the hub and authority score for each page is
made and successively refined based upon values of the surrounding pages. In other words,
after assigning initial hub and authority scores to a collection, repeat the following iterative
process: increase individual authority values based upon the hub values of adjoining pages,
increase the hub values based upon authority values of adjoining pages, and normalize
the hub and authority scores. Kleinberg has shown that as the number of iterations (k)
increases, the hub and authority value vectors converge.

But before running the Iterate computation, an appropriate set of pages must be pro-
vided. Kleinberg found that it best to have a root set S, that satisfied three properties: [20]

i. S, is relatively small.
ii. Sy is rich in relevant pages.
iii. S, contains most (or many) of the strongest authorities.

In practical terms, the set of documents that contains the query keywords will usually
satisfy these properties and be a suitable S,. But such a set is not a good input to the HITS
algorithm. The algorithm increases hub and authority scores according to the scores of the
adjacent verticies. It is best to expand the initial subgraph to include adjacent vertices
(and joining edges) so there can be a context for the algorithm. Kleinberg’s algorithm for
expanding the initial graph to create a subgraph suitable for a input into HITS is described
in figure 4.

An example collection is provided in figure 5. The gray documents (pages) and gray
directed edges (links) are not considered in the Subgraph algorithm, but are provided for



Figure 3: Iterate Algorithm [20]

Iterate(G,k)
G: a collection of linked pages (Web graph)
k: a natural number
Let z denote the vector (1,1,1, ... ,1) € R™
Let H and A refer to hub and authority values
Set Hg := z
Set Ag 1= 2
Fori=12, ... k{
Let AT = % HIF

(p,0)EE
1<p> __ 1<q>
Let H'; = > AT
(p.q)€E
_ A
Ai = 12h
_ H;
Hi = 7y

context. The bright yellow documents form the initial set R,. R, points to 't (R, ) via the
directed blue edges. I'" (R, ) points to R, via the directed green edges. When complete, the
Subgraph algorithm returns the set composed of all pages in S,—i.e., all yellow documents.
It also returns the associated edges—i.e., red, blue, and green arrows. Figure 6 depicts the
collection returned by Subgraph on the example on figure 5.

Figure 4: Subgraph Algorithm [20]

Subgraph(o, €, t,d)
o: a query string
€: a text-based search engine
t, d: natural numbers
Let R, denote the top t results of € on o
Set S = R,
For each page p € Ro {
Let I'"(p) denote the set of all pages that p points to
Let I'" (p) denote the set of all pages pointing to p
Add all pages in I'"(p) to S
If I (p)| < d then {
Add all pages in I'" (p) to S,
} Else {
Add an arbitrary set of d pages from I'" (p) to S,
}

}

Return S,.

The goal of HITS is to use link information to infer authority. Some links, however,
should not confer authority. For example, one should not infer anything from those links
that are only designed to provide simple navigation. Kleinberg uses a few heuristics to
minimize such impact. One is for a given page p to ignore all but one link from a single
domain pointing to p. This avoids ‘collusion’ among the referring pages—e.g., the phrase



Figure 5: Collection of Documents To Be Used in HITS

v

Figure 6: Collection of Documents for HITS After Running Subgraph




““This site designed by ... ” and a corresponding link at the bottom of each page in a given
domain.” [20]

Another heuristic is to minimize inclusion of links that are intrinsic—i.e., internal to a
domain. Instead, only those links that are transverse—i.e., those links that cross different
domains—are considered.

2.4.2 Additional developments in structure-based ranking

Recent research has attempted to resolve certain deficiencies in connectivity-analysis al-
gorithms, particularly in HITS. One problem is characterized as topic drift. Although one
might expect to find information specific to concise queries on a collection as large as the
Web, there is usually a lack of plentiful hyperlinked documents to confer authority. As
such, the Web does not provide HITS with an input sufficient to finding authoritative
documents on very specific queries. The result is that we find authoritative documents on
a generalized version of the original query: given a specific query like “California skiing”,
HITS may produce authorities on more general results—perhaps general California tourism
information.

The Clever system, based upon HITS, attempts to mitigate the problem of topic drift.
The system assigns a weight to each hyperlink describing its importance based upon whether
each hyperlink was intended only for navigation or if it can help determine whether the
source page is authoritative and whether using the link will cause a drift from the orig-
inal query. Specifically, these weights are determined based upon how similar the query
terms are to the anchor text that surrounds links. So, for example, a link that points to
www.princeton.edu, may have surrounding text as follows: “Princeton Univeristy, one of
the colleges in the Ivy League, is located in central New Jersey.” We could reasonably infer
that the destination is related to higher education, the Ivy League, and New Jersey. Thus,
if we are performing a query for “Boston colleges”, the weight assigned to this link might
be lower than one linking to various educational institutions in Cambridge, Mass. because
this description is not directly related to the query terms. [13]

Bharat and Henzinger try a similar connectivity analysis algorithm improvement. [§]
Their approach involves a score for each document considered in HITS based upon the
similarity between the original query and the textual content of the document. There is
an attempt to solve the implicit vocabulary problem: a query composed of a few keywords
may not necessarily describe the desired documents effectively. Thus, the concatenation of
the first 1000 words of the documents in the initial set of relevant documents is considered
to be the expanded query, Q.

Instead of considering all nodes adjacent to the original set, a relevance score is com-
puted for the adjacent nodes. The score for each adjacent document D is the mathematical
distance between the vector composed of the frequency of terms in ) and the vector com-
posed of the frequency of terms in D. (See section 3.3 for more on frequency vectors.)
Adjacent pages are considered if the similarity(Q, D) is above a specific threshold. Thus,
the expanded root set is a pruned version of the collection that would normally be the input
to HITS.

Using similarity techniques, Bharat and Henzinger used HITS to solve two other prob-
lems. One goal was to minimize the influence of “automatically generated links” for navi-
gation purposes; links with descriptions that appeared to be navigational were considered
to be less important than links oriented more towards other content. The other goal was to
minimize the influence of links that are “mutually reinforcing between hosts”—e.g., where



document A is linked to B and B is linked back to A. [§]

2.5 Performance and Architecture

One important aspect of a scalable search engine system is the way data is stored: if data
is compressed and indirection is used in data structures, more computation resources are
required for decent practical performance.

Consider, however, that Google currently indexes over 700 million pages on the Web;
such a collection probably requires tens of terabytes of data just to hold the content. [10]
However, this estimate does not provide for any indexing structures or link information for
the calculation of the PageRank document importance algorithm that Google uses. Google’s
architecture contains components that store and access the collection in different manners.

When indexing the collection, the primary goal is to quickly determine which documents
contain the query terms. As such, a database containing an index of keywords with pointers
to the locations in original documents, along with metadata about characteristics of the
original text (font size, HTML structure like <H1> tags, etc.) can be constructed. This allows
one to issue a query with phrases that explicitly preserve the ordering of search terms. A
separate module contains a database of all the hyperlink information in the collection. The
PageRank computation requires this information for the connectivity analysis.

A theme in designing a search engine is ensuring fast retrieval. This involves complex
data strucutres, and the requirement that most information be stored in both direct and
inverted forms; the latter is required for connectivity computations and as a means to re-
construct the original data from the distributed nature of a given storage mechanism. To
allow for storage of duplicate data, most of the data structures include hand-optimized bit
arrangements such that billions of documents can be stored. For example, special two-byte
structures store information about keyword location (general, anchor or title), capitaliza-
tion, font size, and approximate position in document. The granularity of the information
stored is not very fine, but storing only two bytes per term allows for the data structures
in a “lexicon” of 14 million terms to remain in 256 MB of main memory. [10]

2.6 Search Engine Quality

Measuring the quality of a search engine is difficult, and inherently subjective. Some re-
search has attempted to determine the quality of the index—i.e., does the index thoroughly
represent the entire collection? Can an individual easily search the index for the documents
of high authority? One approach suggests using a metric like PageRank to determine the
quality of the documents in the collection and using this as a basis for judgement. [19]

Another metric for quality is the final result—i.e., can one find the desired information
quickly and efficiently? This is the metric used in the Text Retrieval Conference (TREC)
framework. The TREC evaluation begins with a detailed paragraph describing the desired
information. After performing a search for this information, it is up to a blind panel to
determine the quality of the results. The panel determines in a binary fashion whether each
result is “relevant” (useful) and/or “correct” (what the query was looking for). [18]
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3 Information Access, Storage and Retrieval
Or, What does “similar” mean?

As a result of the research’s dependence on information—access, storage, and retrieval—
two concepts must be understood. First, one must understand how documents are indexed.
Second, as the main thrust of the research involves adding similarity information to the
HITS algorithm, some attention must be given to what “similarity” is, and how this work
uses existing knowledge in the field of information access.

3.1 Indexing

An understanding of how documents are indexed is critical to understanding how search
engines work. The indexing method will have performance implications, resource require-
ments, and allow for different types of searches.

Storing a complete cache of all documents would result in an index the size of the sum of
all documents; this is usually not feasible with reasonable resource constraints. Performance
might also suffer given the resources required to efficiently traverse such a large amount of
content. However, were this practical, it would enable very complex queries. Fortunately,
simple Boolean queries requiring the existence of query terms within documents have no
need for a full content cache. Boolean searches for phrases, sentences, or query terms “near”
one another would benefit from, however not necessitate, the context that a full document
provides.

With these goals in mind, let us consider a simple method that only stores a list of all
the unique keywords within each document. In many implementations this is the minimal
amount of information that must be stored about a document to provide for a complete in-
dex. As such, it is assumed that this model falls well within any given resource constraints.*
Effective use of multimap data structures (e.g., red-black trees or symbol tables) will al-
low for excellent performance. Unfortunately, this scheme only allows for simple Boolean
searches. One would not be able to distinguish between a document referring to the prod-
uct “Microsoft Windows” and one referring to the “large windows in building eight at
Microsoft” since each logically contains ‘Microsoft’ AND ‘Windows’.

To create a scheme that allows for keyword context, an index must preserve the ordering
of the original words in some form. Although storing complete documents is infeasible,
creative use of list and map data structures allows us to achieve similar functionality with
fewer resources. Using a map as a dictionary for words and keeping lists for each document
describing the dictionary entries allows us to store context and locality—ordered proximity—
at relatively low cost. [21, p. 94]

3.2 Similarity

“Similar” is defined as: “1. Of the same substance or structure throughout; homogeneous;
esp. 2. Having a marked resemblance or likeness; of a like nature or kind.” [5, ‘similar’] Thus,
similar documents have the same substance or structure. Unfortunately, the definition of
the substance and structure of a document is imperfect, although most definitions are
“lexically based.” [21, p. 125] From this standpoint, documents that have common phrases
are substantively the same.

4Making the assumption, of course, that any significant index will be allocated reasonable resources. “If
you want to enter this ride, you must meet the minimum height requirements.”
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Our research integrates content-based analysis into the structure-based analysis of the
HITS algorithm. Instead of allowing HITS to consider all hyperlinks between documents,
only a subset of the hyperlinks—one based upon the similarity of the source and destination
documents—is considered.

3.3 Term Vectors®

Most lexigraphical metrics measure the number of terms two sets have in common. At the
most basic level a term can be considered to be a single word. But there is value in logically
considering phrases—i.e., ordered tuples like pairs of words, triples, sentences, paragraphs—
as terms. If we consider these more complex phrases as terms then we can better compare
documents to determine lexigraphic structure.

The natural response then is to consider a vector of these terms for each document.
These are called term vectors; for the moment, assume that these term vectors contain the
frequency of occurrence for each term. Long-standing standard mathematical approaches
can be used to compare two of these vectors.

One approach is to use an angular measure like the cosine measurement. This measure-
ment calculates the cosine of the angle between two vectors representing the documents. It
is the inner product of the vectors, normalized by their lengths:

Zk: (di x ex)
E @) 2 @)’

D and E are vectors representing documents. d; and e are the value of term k in the
respective documents.

Quantitatively, this “extrinsic” measurement focuses on the relative directions of these
vectors to a fixed origin, and not on distance. [21, p. 85] A qualitative consequence is that
a difference in term frequency plays less of a role than a difference in term existence. For
example, a “one-paragraph announcement and an extensive, detailed paper about the same
topic might be judged” similar. [21, p. 85]

Another approach is to measure the mathematical distance between the vectors. Quanti-
tatively, this “intrinsic” measurement measures the absolute Euclidean distance in n-space
between points. [21, p. 85] Qualitatively this measurement considers distance and does not
focus on direction; in the worst case two unrelated vectors which are equally brief could be
“similar.”

Generally, however, it turns out that the results are of the same “quality” regardless
of the metric used for comparing term vectors! There will certainly be specific exceptions
that are not accurately measured by one metric or another, but each metric is technically
correct.® [21, pp. 85-86]

o(D,FE) =

5This presentation of similarity term vectors closely follows the treatment provided by Korfhage. [21, pp.
125-130]

5This is a theme throughout the field of Information Retrieval. There tend to be many varied ways to
quantify and analyze information; most are technically “correct,” all are “different,” but most are equally
“good.”
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3.3.1 Refining of term vectors

When using term vectors for comparison, the vectors should accurately represent the origi-
nal files. The preference, however, is for comparisons to focus on the core differences between
the documents and not on things that would reasonably be ignored. One might reasonably
expect to ignore words like “the, of, and, to, a, and in.” In fact, these words tend to repre-
sent 20% of the words in most documents. Moreover, “the most common 250 to 300 words
in English may account for 50% or more of any given text.” [21, p. 134] The common solu-
tion is to create a dictionary of such stop words and not include their occurrence in a vector
representing a document.

A second improvement attempts to mitigate the problem of a vector representing an
uncontrolled vocabulary. Namely, if one document contains “computers, computing, and
computation” while another contains “computer, compute, and computations”, a pure vec-
tor approach would find these documents to be dissimilar. The classic solution is to use a
stemming algorithm. An example of a stemming algorithm would be one that truncates the
final ‘s’ in an effort to minimize the plural form of words.

The stemming algorithm that is typically used is one by Porter, which turns complex
words into their stems more successfully than the simple algorithm to remove pluralization
mentioned above. [24] The algorithm examines words looking for certain conditions, and
replaces sequences of characters with alternate sequences. As alluded to above, one such
condition might be ‘words ending with s’ with a rule to ‘remove the s’. There are dozens
of rules, each relating to specific linguistic features of the English language. Here is an
example of how this algorithm would stem the word ‘computationally’: computationally —
computational — computation — computa — comput. 21, p. 136] The reader should notice,
however, that other similar words will result in the same stem.

3.3.2 Comparing term vectors

Let us examine how to compare two vectors, where each vector contains a binary measure-
ment of whether a document contains a term. Let D7 and Dy be these vectors, respectively
composed of t1; and t9; (for i= 1 ... N). The notation in figure 7 allows the description,
in aggregate, of how many terms two documents have in common. Figure 8 explains the
notation graphically. [21, p. 126]

Figure 7: Notation for Term Vectors

w = the number of terms for which ¢1; = to; = 1
x = the number of terms for which t1; = 1 and t2; = 0
y the number of terms for which ¢1; = 0 and t2; = 1
z the number of terms for which ¢1; = t2; = 0

n =w-+x
ng =w-+y
N =wt+z+y+z

With this notation, the following definition serves as a measurement of the similarity
between two term vectors:
ny ng
N

6(D1,D2) = w —

13



Figure 8: Vector Notation Venn Diagram [21, p. 127]

D,

This metric provides a way to determine the intersection between two vectors as well as a
perspective based on the size of the vectors as compared to the universe of possible vectors.
A value can take on positive and negative values.

The literature adds an additional factor to the unit of measurement described above.
The unit is normalized in an attempt to measure the “distance” between the two documents.
Not surprisingly, there are many possible different « normalizations to use in the refined
measurement W. There are at least a dozen coefficients that can be used, based
upon simple computations like the vector angle between the two documents, to complex
probability computations. [21, p. 128§]
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4 Experiment Design
Or, What is HITS-SW?

The goal of this project is to improve the quality of relevant documents in content-query
search engines. We believe the results of this work should be applicable regardless of the type
of data set—digital library, particular domain on the Web, or the entire Internet—because
all have hyperlink structures that can be used in HITS-SW.

The central focus of our research is evaluating the HITS-SW algorithm. HITS-SW is
our modification to HITS that incorporates similarity weighting. The hope is that using
similarity in a precomputed global manner independent of individual queries will address
the problem of topic drift.

HITS and HITS-SW differ in the collection that serves as the input to the connectivity
algorithm. HITS-SW assumes that each link on the Web has an associated similarity weight,
measured by the similarity of the general content on the page that is the source of the link
to the similarity of the link’s destination.

The input starts off with the same root set as normally occurs with HITS, but instead
of expanding the root set to include the adjacent pages, a modification is added: including
adjacent pages only if they are adjoined by a link that is within the range of acceptable
similarity weights. Likewise, instead of including all edges between the pages in the set, only
those edges within the acceptable range are included. This collection becomes the input to
HITS-SW. The HITS-SW variant of the HITS Subgraph algorithm is described in figure 9.

An example collection is provided in figure 10. The gray documents (pages) and gray
directed edges (links) are not considered in the Subgraph-SW algorithm, but are provided
for context. The bright yellow documents are the initial set R. R points to pages via links
k, denoted by directed blue edges. Pages point to R via links [ and are denoted via directed
green edges.

When complete, the Subgraph-SW algorithm returns the set composed of all pages
in F—i.e., all yellow documents. It also returns the associated edges EF—i.e., red, blue,
and green arrows. Of interest now is the assumption that links within the specified range
are depicted as dotted arrows. Thus, after running the HITS-SW Subgraph algorithm, the
collection of yellow pages F' and red, blue and green links F returned is the one depicted
in figure 11.

The standard iterative HITS algorithm is run on this pruned collection and those items
that contain the original query page are ranked—i.e., those pages in R. (Another possible
approach would rank all pages that were a part of the expanded set F'.)

Figure 9: Subgraph-SW Algorithm

Subgraph-SW:

Add ids for all documents that match the query to sets R and F’

For each link £ with a source in R and with a weight in the specified range
Add destination of k to set I

For each link ¢ with a destination in R and with a weight in the specified range
Add source of £ to set F’

For each document d in set F'
Add all links with d as a source and a destination in F' to the set F

Return edges in £ and nodes in F'
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Figure 10: Collection of Documents To Be Used in HITS-SW

iR

Figure 11: Collection of Documents for HITS-SW After Running Subgraph-SW
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4.1 Policies

A corpus of data is required to test hypotheses about the use of similarity weighting in
conjunction with the standard HITS algorithm. The first step is to gather hyperlinked
documents for a corpus of content and associated link structure. Then, for each internal
link, we must assign a weight denoting the similarity between the source and destination
documents. With such a corpus precomputed, we can run tests to determine the efficacy of
HITS-SW for a given query and a similarity preference.

4.1.1 Gathering Documents

Search engines for digital libraries usually have direct access to the documents within the
library. As such, gathering documents is a relatively trivial task. Current Internet search
engines, however, must crawl the Web looking for new pages; a time-consuming task. These
spiders must also continually update their caches and indexes as the Web is not static.

Two data sets are used in this project. One is all the webpages residing on the server
www.cs.princeton.edu (hereafter referred to as CS) and the other all the webpages within
princeton.edu’ (hereafter referred to as Princeton or PR). In many ways, the CS domain
approximates a digital library such as a legal database; the pages within CS are generally
narrow in topic, mostly relating to computer science. The hope is that the Princeton domain
better approximates the Internet as a whole, as its content is more diverse.

Web search engines need to ensure that the cache of data indexed is updated periodically
to ensure that decisions about relevant documents actually correspond to the real world
data. In our research this is not a significant concern, and over time, the local cache of
documents will undoubtedly fall out of sync with the real world. Such an assumption should
not affect resulting data. Production-quality search engines are also reasonably tolerant of
unreliable servers; attempts are made to contact servers that were unavailable when the
pages were gathered to ensure the highest possible coverage. The implementation for our
experiments did not reattempt to gather pages that generated errors. This simplification
was justified by the low proportion of errors.

e 24,305 URLs were known in the CS domain, and 19,944 of these were successfully
indexed.

e 145,854 URLs were known in the Princeton domain, and 138,300 of these were suc-
cessfully indexed.

e 85,041 distinct singletons and 923,230 distinct pairs of keywords from the CS domain.

e 524 341 distinct singletons and 10,901,982 distinct pairs of keywords from the Prince-
ton domain.

e 4,031,995 total keywords stored from the CS domain and 53,308,030 total keywords
stored from the Princeton domain.

e 50,901 links from the CS domain had a destination outside of the desired scope.

e 399,386 links from the Princeton domain had a destination outside of the desired
scope.

"Technically, this includes a little more than * princeton.edu, as it includes things like dailyprinceto-
nian.com and pppl.gov. Of note, it does not include *.cs.princeton.edu
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4.1.2 Locating Relevant Documents

For the purpose of this work, a relevant document is one that contains ‘all’ of the query
terms as defined by the user in a Boolean expression.® These queries consisted of only a
few terms. This is a simple, generalized, and portable solution to this problem. It allows
our research to focus primarily on ranking documents based upon relevance.

4.1.3 Ranking Documents Based Upon Relevance

Our goal is to integrate the advantages of the content-based ranking schemes with the
structure-based algorithms. (See section 2.4.2 for more on the latter.)

It is worth distinguishing between the process of ranking the relevance of documents,
and presenting the user with relevant documents. Part of the theoretical problem is deter-
mining which documents are more suited than others to the given query. There are, however,
some complications: first, the user might receive too many results and suffer from informa-
tion overload; second, those results that have the highest relevance might not provide an
adequate amount of context.

Consider a search for a very detailed topic—e.g., “Gateway 2000 Solo Laptop 9100
Series Battery Life”. The result ranked highest may be a document with a concise answer
(two hours), but without additional context, such a result may be inadequate. A user may
question whether this result is for the standard or extended life battery. In some instances,
a better document might be a more general one about the specific laptop in question or
perhaps even Gateway’s comprehensive document about laptops.

On the Web, then, root pages corresponding to highly ranked documents might be
more user-friendly, and are in fact much more desirable by many real users.” Most of these
concerns relate to effectively communicating relevance information to the user. The goal of
this research is not to focus so much on these issues of refinement, but rather to to find a
better mechanism for abstractly ranking documents.

4.2 Similarity
4.2.1 Binary Term Vector Approach

HITS-SW relies on determining the similarity between documents. Our approach uses the
binary term vector style explained in section 3.3.2. Three types of terms are specifically
stored: the individual words, pairs of words (after removing stopwords and applying a
stepping algorithm), and URL references.

The assumption that pairs of words are sufficient to model longer phrases is made. This
seemed suitable for testing, as we hypothesize that queries of phrases longer than pairs can
be generalized from the results of pairs of words. Moreover, in our simple implementation
for testing, the amount of storage required for pairs and phrases greater than three words
would increase exponentially. (See section 5.1 for more information on our implementation.)

Given that we have three distinct types of terms: singletons (1), pairs (2) and URL
references (u), we have seven different combinations (1,12, ... ,12u). However, we claim
that only the following four are worth examining:

e [ is the simplest approach and allows the examination of individual words.

81t should be noted that using a Boolean OR is usually the default in typical search engines, but we do
not expect it to produce as interesting results.
9Google appears to cater to this desire. Many of their highly ranked results point to root documents.
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e 12 is slightly more complicated and provides data to determine whether inclusion of
pairs of words is significantly different from just 1. Although the expectation is that
the number of pairs dwarfs the number of singletons, all terms are assumed to be
equally relevant.

e yallows similarity to be based solely on the number of URL references in common. The
expectation is that this data will be substantially different from measuring similarity
based upon content.

e 12y combines the terms from all three pools. Again, each term is given equal con-
sideration despite the expectation that the number of words usually is much greater
than the number of URL references.

Considering all terms equally important regardless of source will give varying results in
certain boundary cases. For example, when documents have a great amount of content and
few links, the number of 7 and 12 terms will be huge and the number of u terms will be small.
Thus, the majority of terms in 12u will be based upon I and 12 terms. The assumption is
made that this disparity will not result in results that are significantly skewed.

4.2.2 Simplified Similarity Metrics

Recall that there are over a dozen normalizing coefficients « that are used with the basic unit
of similarity. Many of these are similar, and can be categorized into three types of functions.
The experiments use a representative sample from each category using the notation of
section 3.3.2 and figure 7:

e Arithmetic Mean:

e Linear Correlation:

e Yule Coefficient of Colligation:

=
[E—
[\

[(w2)7 + (zy)

aY) = ;

It can be generalized that a(E) > «(L) > «(Y'), so the ordering of g is the opposite. [21,
p. 130]

4.2.3 Candidates for Similarity Weights

With three normalizations and four types of terms considered, 12 distinct measurements of
similarity, given any two hyperlinked documents, are defined. Given the quantity of data
available for analysis, discarding six data points is reasonable.
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Figures 12 and 13 describe the aggregate distribution of similarity weights assigned to
hyperlinks. The y-axis corresponds to the assigned similarity weight, where a higher weight
denotes increased similarity. The z-axis corresponds to the percentile in the cumulative
distribution function. For example, in figure 12, about a third of the mean_1 weights assigned
are above 0.35.

Figure 12: Cumulative Distribution of Weights Assigned in CS Domain
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Much of the data from the PR domain plateaus in the first quartile. Evidently many
pages appeared to be very close to perfectly “similar,” as roughly a third of the links receive
similarity weights close to one. Subsequently, only data obtained from the CS domain will
be discussed, although the results from the Princeton domain are analogous.

One conclusion led us to discard all data that used the Linear Correlation coefficient,
a(L). The reader should observe from figures 14, 15, 16, and 17 that in the aggregate, each
of the three corresponding pairs of “linc” and “mean” (a(L) and a(M)) tend to be similar.
Namely, there is a constant offset between linc_1 (a(L) using singletons only) and mean_1,
etc. This assertion was made on the aggregate data. The underlying assumption so far has
been that the difference between each corresponding linc and mean data point would be
a constant offset and that the aggregate graph was not the result of data canceling each
other out. This assumption was reasonable and accurate. Figure 18 displays the difference
between the corresponding mean and linc data points. As the values are negative, the
values for linc are always larger (as expected). About 50% are within a small e of the
original mean weight, and about 90% of all data points are within the original ||weight||.

Because the differences between the linc and mean data were small, the expectation
was that the differences in the final results based upon each of these data sets would be
too small to warrant the effort of testing HITS-SW with both data sets. By using similar
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Figure 13: Cumulative Distribution of Weights Assigned in Princeton Domain
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Figure 16: Cumulative Distribution of Figure 17: Cumulative Distribution of
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graphs and logic, the “12u” data points were also eliminated for the mean and yule. This
is illustrated in figures 19 and 20.'°

Figure 19: Difference Between Respective Figure 20: Difference Between Respective
mean_12 and mean_12u Weights Assigned yule_12 and yule_12u Weights Assigned
in CS Domain in CS Domain

In the case of mean, the prediction whether 12 will be above or below 12u cannot be
made, and the great majority of the time the difference is very small—less than 20% of the
original ||weight|. There are, however, a few important outliers. About 7% of the weights
showed a difference greater than an order of magnitude. Worse, about 3% differed greatly—
by four orders of magnitude! For the yule data, the picture was a little clearer: the difference
was always extremely small.

In general, the difference between 12 and 12u was quite small. This is likely attributed
to the significantly greater quantity of singletons and pairs than number of URL refer-
ences. Initial inspection of this data led us to believe that we would be hard pressed to
generalize differences in our final results based upon these minor differences because of the
unpredictable nature of ||12|| and ||u||: there were a small number of noticeable differences
between 12 and 12u in mean, and we could not predict whether or not 12 > 12u.

4.2.4 Final Similarity Weights

At the beginning of testing HITS-SW, six similarity metrics were at our disposal: mean 1,
mean 12, mean u, yule_1, yule 12, yule u. Each query ran using each available similarity
metric in HITS-SW, and in general the final ranked results were equally ‘good.’!!
Appreciating the time constraints for this research, a decision to focus efforts on ana-
lyzing HITS-SW using the mean data was most logical. The differences in output between
using mean_1 and mean_12 were generally unapparent. Thus, given that queries sometimes
consisted of phrases, we decided to use the mean_12 data in favor of mean_1. Although analy-
sis using both the mean 12 (m12) and mean_u (mu) data continued, most of the final results
have focused on the m12 data as the primary similarity weights in the use of HITS-SW.

10The reader should pay particular attention to the scale of figures 19 and 20, as they are quite different.
"This is certainly subjective. While we found that each produced a different ranked result, however the
results seemed to have reasonably similar entropy values, and rankings that looked equally “interesting.”
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4.3 Obtaining and Measuring HITS-SW Results

The data from two similarity metrics, mean_12 and mean_u, were used in the HITS-SW
queries. An additional parameter describing the desired similarity range is required to use
HITS-SW to rank results. This range was specified as a real number between 0 and 1.
Including the entire range [0, 1] effectively means running HITS-SW as pure HITS, as it is
not based upon similarity weights.

4.3.1 Testing HITS-SW

Our tests of HITS-SW used two ranges: [0, m| (“lo”) and [m, 100] (“hi”) where m is the
value that denotes the edge that is the median weight. This use of two ranges tests two
extremes of HITS-SW, and using the median made more sense than choosing 0.5 because
this will account for the links having a disproportionate number of similar or dissimilar
weights. (In fact, for the data used in these experiments, the median tended to be lower
than 0.5, although it varied based upon the specific similarity metric used.) The median
was based upon the aggregate data shown in section 4.2.3; it varied between data from the
Princeton domain and the CS domain.

4.3.2 Measuring Results

Our initial observations of the hi and lo queries suggested certain trends in the results’
ranking. We developed quantitative metrics called entropy measurements to compare HITS-
SW ranking to that of HITS.

Our expectation is that users will concentrate mainly on the ranking of the top results
and pay attention to the top 20 ranked items, with particular focus on the top 10. In other
words, people consider the arrangement of the top 10 to be the most important but do
inspect the next 10 results as a whole. Thus, the quantitative metric only considers the top
20 positions even though it is possible that HITS-SW produced wildly different results for
ranking less important items. Although only the top 20 results are scrutinized, HITS-SW
does assign a rank to all the results based upon the authority score.

As often seen in information retrieval, there is not one explicit way to measure the dif-
ference between the two permutations. While each metric is particularly good at capturing
a certain “type of difference,” each usually misses equally important types. The following
metrics measure the difference between two orderings Py and P;. The hope is that when
used together they accurately describe the differences in orderings.

There is no obvious way to combine all of these metrics into a single scalar value. Each
measurement provides a different way to compare two permutations and thus produces
slightly different results. Moreover, these metrics do not exhibit desirable properties like
obeying the triangle inequality theorem. As such, their use is limited to comparing HITS-
SW rankings to the corresponding HITS ranking, always setting Py to be the HITS ranking.

1. elements orig and new refers to the total of elements in Py as well as the total elements
in P;. Comparing the differences shows how much HITS-SW decreased the number
of ranked results.

2. inversions t10 counts the number of inversions seen in the top 10 elements in P;. An
inversion is when a pair of elements in a permutation are out of their natural order.
Inversions describe to what extent the new top 10 elements are ‘mixed up:’
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Let iyi3 .. .14, be a permutation of the set {1, 2, ... , n}. The pair (i, i) is called an
inversion if k < ¢ and i > iy. [11, p. 87] For example, the sequence {10, 5, 9, 11, 15,
3, 1, 2} would have 19 inversions as there are 5 elements less than 10 that follow 10:
{5,9, 3, 1, 2}, 3 after 5: {3, 1, 2}, 3 after 9: {3, 1, 2}, 3 after 11: {3, 1, 2}, 3 after 15:
{3, 1, 2} and 2 after 3: {1, 2}.

3. inversions orig counts the number of inversions seen by observing only those elements
in the top 10 of P, that that were also in the top 10 of Py. This should provide insight
into whether the original top ten elements were reordered or if new elements were
promoted to take their place.

4. intersection t10 notes the number of elements in the top 10 of P; that were also in
the top 10 of Py. This shows whether the elements in P; are new or not.

5. intersection t20 notes the number of elements in the top 20 of P; that were also in
the top 20 of Fy. It is important to determine the intersection of the top 20 because
of the assumption that while the ranking of elements 11-20 do not matter, the fact
that they are in the group 11-20 is important.

6. distance measures how far each element in the top 10 of P, has traveled to arrive
in the final destination. This metric helps determine whether the top 10 elements
in P, were formerly ranked as not very important, and thus highly promoted. It is
computed by the following equation:

10
1 . _ )
5D logsli — By (P
=1

The factor of % accounts for the symmetry involved in such a measurement. The loga-
rithmic scale helps ensure that highly promoted items do not dwarf other promotions.

4.3.3 Creating a control group with random similarity weights

Our initial observations of HITS-SW produced results that were qualitatively and quanti-
tatively different from HITS.

Comparing results tends to be a subjective task, and it is difficult to determine what
precipitates changes. To determine if the results are a factor of intentionally chosen simi-
larity weights, we attempted to reproduce HITS-SW-like results from arbitrary similarity
weights. Recall that tests on HITS-SW focused on running queries and considering either
those links that received a similarity weight above or below the median weight. Therefore
the goal was a test that could simulate how the HITS-SW queries would consider up to
half of the edges. The test would simulate the creation of an arbitrary weighting function,
and randomly select 50% of all edges, and consider them as “within the threshold” for
HITS-SW. By considering an arbitrary subset of the links as input to our algorithm, we
could determine whether our results were because HITS-SW only used a subset of links, or
whether (as we hope) HITS-SW focused on a well-chosen subset of links.

For each query, 25 random tests served as a baseline for comparison to HITS-SW queries.
Figure 21 contains pseudocode describing the process used to run these trials. The same
arbitrary weighting function was used across queries. Thus, the same edges would be masked
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out—and thus not available for consideration—for a specific test across all queries. Thus, for
example, the edges masked in test one would be for all queries. This masking determined the
topology of the graph. As HITS (and therefore HITS-SW) is based purely on the topology,
this masking effectively caused a change in how ranking was determined. As this consistent
masking caused specific topologies to develop, the hope was that documents ranked in
separate queries would receive consistent rankings because of the consistent topologies.

Figure 21: Pseudocode for Random Similarity Function

R; s: function R; that masks out (1 — f) x edges
E: all edges in the universe

Qj: A query
Let Subgraph-SW-R model Subgraph-SW (figure 9) with modification:
“weight in the specified range” = “edges not masked”

Fori=12,...,25{
Apply R;0.5(F) to mask 50% of edges
Forj=1.2,...,n{
Run Subgraph-SW-R and HITS-SW for query Q;
}
}
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5 Implementation
Or, How do we collect 8 GB of data?

One goal of our research was to create a set of data that can be used to test hypotheses
about use of similarity weighting in conjunction with the standard HITS algorithm. The
first step is to gather hyperlinked documents for a corpus of content and associated link
structure. Then, for each internal link, we must assign a weight denoting the similarity
between the source and destination documents.

With such information precomputed, tests determine the efficacy of HITS-SW for a
given query and a similarity preference. Standard retrieval techniques are used to find
relevant documents for the query. Then HITS-SW runs for the similarity preference on
these relevant documents.

In this implementation, Perl[3] was used to write a majority of the code; the software
ran on local Solaris servers. The data was stored in a relational Oracle database accessible
over the network. Our components can be divided into those designed to gather and prepare
data, those related to issuing queries, those related to running the HITS-SW algorithm, and
those related to analyzing the output. The expectation is that the components designed to
gather and to prepare the documents are run (in series) before any queries are issued.

5.1 Database Schema

Central to the organization of the data is a table that stores a mapping between all of the
URLs comprising the designated corpus and the assigned numeric ID. A number of flags
for storing state are also stored in this mapping. The definition of this table can be found
in figure 22.

Figure 22: SQL table definition: urls

CREATE TABLE  urls(

id INTEGER NOT NULL,
url VARCHAR (256) NOT NULL,
universe INTEGER NOT NULL,
link_state INTEGER,

content_state INTEGER,

PRIMARY KEY (id)
)

Field content_state stores information regarding whether the content pointed to by this url has been gath-
ered and whether an error was encountered while doing so. Field 1ink_state stores information regarding
whether the links with this id as a source have been assigned weights yet. Field universe allows for multiple
corpuses, each containing its own set of URLs.

All other tables ignore the concept of universe. Separate table instances are used instead
of a field within each table designating the corpus. A naming convention like tablename one
or tablename two for universes 1 and 2 is used.

This approach is slightly more inconvenient for programmers because accessing SQL
commands must be modified to reflect the varying names for tables. It does, however,
allow for a few significant advantages. It primarily allows for faster access: by using disjoint
tables, simple queries that do not involve existing indexes do not have to sort through data
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in another corpus that should clearly be ignored. It also eases maintenance as it enables
the gathering of documents for one set of data to run interrupted even if another is off-line
for maintenance.

Unique words and phrases found when gathering content are stored in the table defined
in figure 23. Links destined within our desired scope of documents are stored. Subsequently,
they will have similarity weights assigned to them. The table that stores this data is defined
in figure 24. Although they are unused in HITS-SW, links that point to documents that
do not map to an id—i.e., those links that are outside our scope—are stored in the table
defined in figure 25.

Figure 23: SQL table definition: content

CREATE TABLE content (

id INTEGER NOT NULL,
phrase VARCHAR(80) NOT NULL,
type INTEGER NOT NULL,

PRIMARY KEY (id, phrase)
)

Field type denotes whether a phrase is a single word or pair.

The given schema is optimized for bulk loading of data. With the exception of the
implicit indexes created by the primary key constraints, there are no indexes that need to
be maintained when documents are gathered as the database is bulk loaded with content and
link data. In fact, although the database is optimized for loading data, it is not optimized
for any database queries.

Once the database contains all the content and link information, two indexes are created.
One index is on the ids within the content table and the other is on the phrases in the
content table. These allow the efficient retrieval of the information necessary to determine
similarity.

5.2 Seeding the Database

The database was first populated with all the URLs within the scope of consideration.
In our case, the URLs were extracted from the local search engines corresponding to the
domains chosen.'? Extracting from these two sources ensured that all URLs were known
to point to valid resources. The spiders in these production search engines respected the
privacy of published documents by obeying the robots exclusion protocol. [2] As such, our
data only consisted of documents intended for public access.

Before these URLs could be used as seeds, some processing was required to make the
format more uniform. URLs are typically composed of a protocol (e.g., HTTP), a site
(e.g., www.princeton.edu), a port (e.g., 80), a location on the site (e.g., /gleeclub/), a file
(e.g., index.shtml), and possibly an anchor (e.g.,#section2). The location and filename are
typically case sensitive, whereas the other information is not.

For this study, it was desirous to index all textual content, but many of the URLs
provided did not fit this criterion, as they pointed to binary files of varying forms. There

2These extracted URLs—from the Verity search engine used at Princeton and the Infoseek search engine
used in the CS department—were stored as a formatted textfile.
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Figure 24: SQL table definition: links

CREATE TABLE  links(

id1 INTEGER NOT NULL,
id2 INTEGER NOT NULL,
link_state INTEGER,

v_plain_1 REAL,

v_plain_12 REAL,

v_plain_u REAL,

v_plain_12u REAL,

v_mean_1 REAL,
v_mean_12 REAL,
v_mean_u REAL,
v_mean_12u REAL,
v_linc_1 REAL,
v_linc_12 REAL,
v_linc_u REAL,
v_linc_12u REAL,
v_yule_1 REAL,
v_yule_12 REAL,
v_yule_u REAL,
v_yule_12u REAL,

PRIMARY KEY (id1,id2)
)

Fields with the suffix _1 refer to the weight that only considers phrases of individual words when assigning
a similarity; the suffix _12 refers to the weight that considers phrases of individual words as well as pairs;
_u refers to the weight that only considers the links; finally, fields with the suffix _12u refer to the weight
that considers singletons, pairs, as well as links when determining similarity.

The keyword plain refers to the unnormalized weight as explained in section 3.3.2. The keyword mean refers
to the weight as normalized by the “arithmetic mean” coefficient, linc refers to the “Linear Correlation”
and yule refers to the “Yule Coefficient of Colligation”. [21, p. 129]

Figure 25: SQL table definition: otherlinks

CREATE TABLE otherlinks(

urlil VARCHAR (256) NOT NULL,
url?2 VARCHAR (256) NOT NULL,
link_state INTEGER,

PRIMARY KEY (urlil, url2)
)
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was no easy way to remove these undesired URLSs from the set, but the following heuristics
were used to make the set of URLs we received more uniform:

1. Only keep URLs pointing to resources accessed by HTTP.
2. Remove any explicit mention of port 80.
3. Remove all anchors from URLs.

4. Change the protocol and site to lowercase, but leave the case sensitive location and
filename alone.

5. Unescape characters.

6. Truncate typical ‘default’ filenames like index.html, index.shtml, index.htm,
default.html, default.htm, default.shtml, index.php, default.php 3

7. Append a forward slash to URLs that appeared to end in a directory
(e.g., www.princeton.edu/cit — www.princeton.edu/cit/).

8. Ensure that these changes do not result in a duplicate entry.

9. Finally, attempt to remove all URLs that do not end in a known text extension.'*

5.3 Core Library Functionality and Performance Designs

There is a core library written in Perl that is designed to provide many of the services re-
quired for infrastructure. There are settings for configuration of all the scripts and informa-
tion necessary for customizing the software for each specific universe of data.'® Accordingly,
there are different ways of interacting with the database to access the separate tables for
each domain of data.

There are also a number of text processing tools. There are functions for converting
URLs to lowercase in the manner described above, as well as many functions to convert
text into keywords. Namely, the following techniques are used:

1. Remove all non-alphabetical characters. The assumption was that people will not
search for non-alphanumeric characters and that it would be reasonable to simplify
the data and not include numbers for the scope of this study.

2. Convert most words to lowercase. If a word appears to be an acronym (at least the
first two characters are uppercase), it was left as is.

3. Use Porter’s stemming algorithm to turn words into their root form.

4. Remove stopwords. A classic list of stopwords, with the addition of a few Princeton-
specific words (e.g., “Princeton”), was used. [1]

13This truncation was easier on the CS domain as we could quickly determine which one or two were used
on the single webserver. Within the Princeton domain, it was more difficult as many webservers were used
throughout Princeton, and we could not guarantee that we had eliminated all possibilities.

MWith the use of a regular expression, we looked at all the unique final five characters sequences and
judged, by inspecting a sampling of the URLs whether such an extension referred to a binary file. This
approach had mixed success.

50ur data is segregated into two universes—the Computer Science domain and the Princeton domain.
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5. Extract all unique words and pairs of words.

Finally, there were additional functions to facilitate the partitioning of URLs in the
database into n sets.!

5.4 Database Information

Here are some statistics about the data we stored in our database:

e 7.35 GB of data and indexes.

e 0.9 GB of the total database corresponds to the CS set of data. Of this, 0.7 GB is
actual data while 0.2 GB corresponds to indices.

e The remaining 6.45 GB of the total database corresponds to the Princeton set of data.
Of this, about 4.0 GB is actual data while 2.45 GB corresponds to indices.

5.5 Performance Concerns

In the design of each module, there was always the decision whether information should
be locally cached to prevent additional database queries and network usage. The scope of
caching varies from module to module.

Due to the high frequency with which each component would need to translate between
the arbitrary id assigned to each URL and the actual URL, it made sense to cache such
information locally. Although only about 10 MB were required on disk, storing such infor-
mation in a hashtable within Perl required about 40 MB of memory. This was an interesting
finding, given the usual expectation that a hash table requires about 150% space usage.
Our hypothesis for this 400% expansion is that Perl does not efficiently store data given
that data are inherently untyped. Running five processes per machine uses about 200 MB
of memory. But in the larger scheme, where each machine had 8 GB of memory and 20 GB
of swap, running five processes per machine seemed reasonable.

Another module required access to all of the similarity weights for all of the links. The
first version of the software did not cache this locally, as it was on the order of 100 MB on
disk. Such a version took ten days to run a process, which was unacceptable. Caching such
information locally so that we would not have to issue many queries brought the running
time down to about ten minutes.

5.6 Gathering Data from the Web

This lynzwrap module had the task of downloading and parsing all pages from the Internet,
and storing the keywords in the database for subsequent similarity computations. The
module was designed so that many instances could be run in parallel, and it took advantage
of the core library’s ability to partition the set of URLs into multiple portions. Each instance
of the lynxwrap software received instructions upon startup regarding which particular
partition it would pursue. This parallelization was important because a fair amount of
time and computation was required to initiate a network connection and then to download,
render, and parse the content.

For the purposes of our implementation, n was set to 10. We would usually distribute these 10 tasks
across two machines, as we were limited by the number of simultaneous network connections allowed per
machine to the database.
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The software used a modified version of lynx, the terminal emulation Web browser. [4]
The modifications allowed it to take a URL as an argument and output both the hyperlinks
found within the document and a rendered version of the HTML suitable for parsing.

One particular complication encountered was reliably downloading unreliable informa-
tion. As pages are stored in a distributed manner, there is no guarantee that they will be
available for download. Taking this into consideration, spiders should make several attempts
to repeat downloading pages which exhibit errors (e.g., server is down). Part of the com-
plication was determining all the possible errors that can occur with such varied input as
the Web provides. It was usually easy to determine if the expected page no longer existed,
as HTTP error codes existing for such problems are easily obtainable. Typical problems
encountered related to correctly capturing the content and turning it into keywords. If a
document contained zero information, attempts were made to exclude it from the database.
After clean-up of a document’s content (stemming, condensing, etc.), a secondary check en-
sured the document was still significant. Results from an HTTP GET were at times not
reproducible: a page would often be returned as blank, but without an error. The cause of
this problem is unknown, but a work-around was to repeat the HTTP GET if this error
was encountered.

Another problem stemmed from the imperfect heuristic used to avoid indexing binary
files: occasionally, as a result of a binary file, a module ‘found’ a disproportionately large
number of keywords. The simple solution was to ignore any page that had a suspiciously
large number of keywords.!”

This module also had the task of loading the database with the hyperlinks found in
the documents. If the hyperlinks found linked to a page that was one of the seeds (and
thus had an id preassigned), they would be inserted into a separate bucket from those that
pointed outside the domain we wished to download. Pseudocode for the lynxwrap module
is described in figure 26.

Figure 26: lynxwrap pseudocode

For each URL, ¢, in our partition of the set of unvisited URLs {
Download ¢, reporting HT'TP errors
Update database with the links in ¢, separating into appropriate tables
Turn formatted HTML of ¢ into minimal keyword text format
Update database with singleton and pairs of keywords

}

5.7 Assigning Similarity Weights to Hyperlinks

This statwrap module computed the similarity weights for all the internal links that were
found. This module was another process that could run in parallel with other instances of
itself. The ability to run in parallel was important because there was usually eight times
as many links as original URLs, and processing each URL required a number of database
queries to retrieve the information necessary to perform the similarity computations.

"For our purposes, the threshold was set to be at least 8000 distinct individual words or at least 70,000
distinct pairs of keywords. These parameters were arbitrary based upon empirical results showing that they
precluded including binary files but did not seem to affect the inclusion of any text files we wished to index.
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The expectation was that this module would run once the lynxwrap model had down-
loaded all the content. This was required because part of the configuration input was infor-
mation describing the total number of distinct keywords found in the domain.

To minimize the number of database queries, this software ran the similarity comparisons
as two nested for loops. This was a reasonable improvement over no caching, and required
little programming effort. Although better algorithms and caching structures existed, this
module only needed to be run once, so the inefficiency was acceptable.

Each similarity metric built upon the same mathematical foundations. To compare two
documents D and D-, the relationship between the keywords in the set composed from
D; and those composed from Ds, had to be known. Such computations could be used in
determining each similarity weight. Pseudocode for the statwrap module is described in
figure 27.

Figure 27: statwrap pseudocode

For each URL, i, in our partition of the set of unweighted URLs {
Retrieve all keywords in 4, and store for computations
For each URL, j, that is the destination of source 4 {

Retrieve all keywords in j, and compute the similarity(i, j)

Update database with results, and mark (i — j) as finished

}
}

5.8 Preparing a Query-Specific Collection for HITS-SW

This module would query the database and prepare a collection of related documents for
input into the HITS-SW algorithm. While this module could be run in parallel with other
instances, it did not need to partition any information in the database.

This software had two tasks: first, to find the relevant documents—i.e., those that
contained the query terms (for most of our queries, multiple keywords were logically ANDed
together); second, to expand the root set in accordance with the HITS-SW principles. The
first of these tasks required access to the database; caching the information would not be
efficient because the amount of data was large and diverse as compared to the number of
times we would use it. The second task required access to the similarity weights assigned
to all the links, as each must be inspected to determine whether the associated weight is
within the specified range. This weight information can be locally cached.'®

5.9 Hubs and Authorities Computation

This is a C implementation of the HITS iterative algorithm created by Jonathan Baccash. [7]
This module alone is a pure HITS implementation, but combining it with the output of the
Subgraph-SW module yields an implementation of the HITS-SW algorithm.

18Tn fact, caching such information resulted in saving at least two orders of magnitude of time!
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5.10 Manipulating Ranked Output

Scripts manipulated the output to better communicate the results of the HITS-SW algo-
rithm. In addition to reformatting the document in a manner that is easier to comprehend
(e.g., adding URLSs to the arbitrary ids), analysis of the output included a comparison of
the reordered URLs to the analogous output from the standard HITS algorithm for the
same query. Additional computations demonstrate quantitatively how HITS differed from
HITS-SW. See section 4.3.2 for further explanation.

5.11 Random Weighting Function for Control Group Tests

A function that could select an arbitrary subset of hyperlinks for considering in HITS-SW
was required. These elements were stored in an array, and the goal was to mask off half
of the elements for use. The approach taken was to mask off the first half of the elements
and then randomly shuffle the array, using the Fisher-Yates shuffle. [15, pp. 121-122]. The
shuffle algorithm used a pseudorandom number generator, seeded with a distinct random
value for each of the 25 trials conducted.

5.12 Security, Performance, and Political Concerns

Because of the massive size of the Web, spiders must be able to efficiently gather pages at
an extraordinary pace. This presents a security problem: most public servers do not expect
to have a client download all of their content simultaneously. (This is a real possibility with
multiple crawlers running in parallel.) Thus, a spider must be a respectful Web citizen and
not overwhelm servers. A simple solution would be to interleave requests for data between
different servers. [10]

Components have many instances running at once, each using tens of megabytes of
memory for hashes of data and hours of CPU time for downloading content, computing
similarity weights, or running the HITS computation. Such resource usage did not always
go unnoticed. It is common for University users to casually use days of CPU time and large
amounts of memory for mathematical computations in a program like matlab. Running
an a.out program for an introductory computer science course that is stuck in an infinite
loop also usually goes unnoticed. However, running resource-intensive programs with other
names is unusual. This is what much of our software was doing.

When running software that downloaded all content from all the servers in the Princeton
domain, we wanted to ensure minimal impact on others. An admonition was given to the
proper University departments that this software would be running and that the speed of
the programs could be decreased if the impact was a burden. This announcement brought
even more attention to the ten or so instances of lynxwrap running on the campus servers.

At about the same time, there were a number of security incidents involving illegal
port scanning and connections originating within Princeton to external sites (e.g., national
science laboratories). While the timing of such incidents was fortuitous, until the causes were
determined several days later, negative attention was brought to the HITS-SW processes
being run. The simplest approach, given no impending deadline for data collection, was to
suspend the collection of data until innocence could be demonstrated.
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6 HITS-SW Findings
Or, As a result, did the sharks get smarter?

Although it is difficult to make a blanket statement like “one should always use HITS-SW
with a certain similarity parameter,” the results of using HITS-SW are indeed interesting,
and worthy of analysis. One difficulty is objectively observing patterns that are generaliz-
able.

The quantitative metrics for the entropy provide insight into a reordering, but do not
provide an understanding of the specifics of what happened in a given reordering. By
observing the name and location of specific URLs, one can gain some insight into the
content of the document. The original content pointed to by the URLs allows for the best
understanding of what a reordering means.'”

Though one hopes to correctly infer the rationale behind reordering the documents
based upon an investigation of the similarity weights and the content of the surrounding
documents, there is no guarantee of this procedure. The graphs of similarity weights are
usually quite complex; trends in specific queries usually cannot be generalized to explain
reordering in other queries. As such, many conclusions remain quite subjective.

6.1 Randomized Control Groups Are Unlike HITS-SW Tests

The hi and lo tests using HITS-SW are qualitatively and quantitatively unlike the random-
ized tests run. (The reader may observe the data in appendix A.) The great majority of the
random results do not look like the hi and lo tests. Aggregate entropy metrics show that
the random weight tests tend to be more like the original HITS tests.

The original HITS tests serve as the baseline for the number of ranked elements, as the
results ranked by HITS-SW are always a subset. In figure 28, bars represent the number of
elements in the hi (blue), lo (red), and median random (yellow) queries, as a fraction of the
original HITS. The lo queries typically rank the most number of elements—and far more
than the hi queries. The median random is typically fairly constant, containing around 85%
of the elements in the original HITS ranking. Figures 29, 30, 31, 32, and 33 are all displayed
in the same manner, with the data normalized to the median random query.

The distance the top 10 elements traveled is almost universally lower in the random
queries than hi query. The lo query is typically similar to the randomized query, although
there are some cases where the lo query is very close to zero. This will be addressed more
in subsequent sections, but often the lo will have a distance value that is very small, as
the query is close to the original HITS. Usually the random queries will also be quite close
to the original HITS value, and have a very small distance. The reader should consult the
actual aggregate entropy data in appendix A.

The rate of intersection in the top 10 and top 20 elements are typically quite high—
higher than either the hi or lo queries. Usually the lo query has a higher rate of intersection
as many of the lo queries typically are quite similar to the original HITS ranking.

As a result of the great variation and no distinct pattern, it is not possible to comment
on the relation between the number of inversions in the randomized results and those in
the hi and lo queries.

The rankings for all of the tested queries typically look like the original HITS output,
occasionally with a few random elements. In many ways the HITS-SW lo queries typically

YThere is the important caveat that our implementation of HITS-SW relies on cached keywords that are
from December 2000—roughly four months older than the current pages on the Web.
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HITS-SW Aggregate Entropy Comparison of Ranked Element Counts

Figure 28
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have values for the entropy measurements suggesting they are quite similar to the original
HITS. The random weighting entropy data suggests that the random weighting rankings
are even closer to the original HITS ranking. Observing the actual ranked output provides
additional support for this claim.

6.2 Example HITS-SW Queries
6.2.1 “java” at Princeton

Figure 34 is the output from the standard HITS algorithm in a query for “java” on the
Princeton domain. Notice that each page is on the “popindex” server. This site serves as
a major archive for population research statistics. Part of this database contains an index
for hundreds of research articles and citations. Each of the documents ranked in figure 34
contains the word java and are considered to be authoritative sources, and thus are highly
ranked.

Figure 34: Ranking of HITS for “java” at Princeton

popindex.princeton.edu/browse/v55/n3/n.html
popindex.princeton.edu/browse/v53/n2/f . html
popindex.princeton.edu/browse/v52/n1/f .html
popindex.princeton.edu/browse/v53/n3/f .html
popindex.princeton.edu/browse/v55/n2/f . html
popindex.princeton.edu/browse/v57/n1/f . html
popindex.princeton.edu/browse/v53/n1/f . html
popindex.princeton.edu/browse/v55/n1/f . html
9 popindex.princeton.edu/browse/v52/n2/f .html
10 popindex.princeton.edu/browse/v52/n4/f . html
11  popindex.princeton.edu/browse/v58/n1/f . html
12 popindex.princeton.edu/browse/v57/n3/f .html
13  popindex.princeton.edu/browse/v56/n3/f .html
14  popindex.princeton.edu/browse/v58/n2/f .html
15  popindex.princeton.edu/browse/v56/n2/f .html
16  popindex.princeton.edu/browse/v58/n3/f .html
17  popindex.princeton.edu/browse/v62/n3/f . html
18 popindex.princeton.edu/browse/v59/n1/f .html
19  popindex.princeton.edu/browse/v54/n3/f . html
20 popindex.princeton.edu/browse/v59/n4/f.html

W N O Ok W N -

Figure 35 itemizes the top 20 results from running the hi query using the mean_12
similarity weight data. The format of the figure describes the original rank in the first
column and the new rank in the second column. Thus, the item now ranked as number 1
was formerly number 881. The pages located within “~matalive” are a part of the Math
199 Math Alive course home page and the pages located on the “storacle” server are Java
API documentation.

Figure 36 enumerates the top 20 results from running the lo query with the mean 12
similarity weighting. Again, the documents are all a part of the Population Index library.
The results for running the same query, but with HITS-SW similarity parameter set as the
range [60th, 100]2° for the mean 12 aggregate weights are located in figure 37. The pages

20411 values greater than that corresponding to the 60th percentile
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4

located within “~barshied” are a part of the personal homepage for an undergraduate

student.

Figure 35: Ranking of HITS-SW hi m12 for “java” at Princeton
884 1 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab2/1lab2_6.html
885 2 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab2/1lab2_4.html
886 3 www.princeton.edu/"matalive/VirtualClassroom/v0.1/html/lab2/lab2_3.html
739 4 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_1_1.html
738 5 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_3_1.html
511 6 www.princeton.edu/Siteware/AnnArchiveApr1996.shtml
761 7 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_3_7.html
760 8 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_3_5.html
759 9 www.princeton.edu/ "matalive/VirtualClassroom/v0.1/html/lab5/controls_3_6.html
763 10 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_3_3.html
762 11 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_3_8.html
765 12 www.princeton.edu/"matalive/VirtualClassroom/v0.1/html/lab5/controls_3_9.html
766 13 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/lab5/controls_3_2.html
933 14 www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/labl/labl_8_4.html
093 15 storacle.princeton.edu:9001/ows-adoc/java/Package-java.lang.html
105 16  storacle.princeton.edu:9001/ows-adoc/java/java.lang.RuntimeException.html
106 17 storacle.princeton.edu:9001/ows-adoc/java/java.lang.Exception.html
131 18 storacle.princeton.edu:9001/ows-adoc/java/java.lang.LinkageError.html
145 19  storacle.princeton.edu:9001/ows-adoc/java/java.lang.VirtualMachineError.html
147 20 storacle.princeton.edu:9001/ows-adoc/java/java.lang.IncompatibleClassChangeError.html

6.2.2 “shrimp” at Computer Science

Figure 38 is the output from the standard HITS algorithm in a query for “shrimp” on the
Computer Science domain. The intent is not to find prawns, but sSHRIMP—Scalable High-
performance Really Inexpensive Multi-Processor—the research project by the Computer
Science department.?!

Many of the ranked pages are in the shrimp subdirectory of the CS server. These pages
are in the section devoted to the SHRIMP project. With the exception of the first document,
the other ranked pages correspond to personal homepages of graduate students who have
worked on the SHRIMP project. The first document is from the personal homepage of Mike
Bostock, an undergraduate student, and contains a reference to shrimp, the food.

The total number of ranked results for this query is quite small, and thus when ranking
items using HITS-SW, there are fewer than 20 items ranked. Figure 39 itemizes the top 18
of the results of running the HITS-SW hi query with mean_12 similarity weighting data.

Figure 40 enumerates the top 11 results from running the lo query with the mean 12
similarity weighting data. Figure 41 displays the results from the query using similarity
weights greater than the 80th percentile.

As the “shrimp” query results in a small number of documents, it is not reasonable to
examine the standard randomized control test data. In such a small set of pages, examining
25 random permutations would cover most of the universe of possibilities and not provide
as much value as if the query returned hundreds of results.

21 Although the acronym is uppercase, this query was run as if the user queried for the lowercase “shrimp”.
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Figure 36: Ranking of HITS-SW lo m12 for “java” at Princeton

popindex.princeton.edu/browse/v55/n3/n.html
popindex.princeton.edu/browse/v53/n2/f . html
popindex.princeton.edu/browse/v52/n1/f . html
popindex.princeton.edu/browse/v53/n3/f . html
popindex.princeton.edu/browse/v55/n2/f . html
popindex.princeton.edu/browse/v57/n1/f . html
popindex.princeton.edu/browse/v53/n1/f . html
popindex.princeton.edu/browse/v52/n2/f . html
popindex.princeton.edu/browse/v55/n1/f . html
popindex.princeton.edu/browse/v52/n4/f . html
popindex.princeton.edu/browse/v58/n1/f . html
popindex.princeton.edu/browse/v57/n3/f .html
popindex.princeton.edu/browse/v56/n3/f . html
popindex.princeton.edu/browse/v58/n2/f .html
popindex.princeton.edu/browse/v56/n2/f .html
popindex.princeton.edu/browse/v58/n3/f . html
popindex.princeton.edu/browse/v59/n1/f . html
popindex.princeton.edu/browse/v62/n3/f .html
popindex.princeton.edu/browse/v54/n3/f . html
popindex.princeton.edu/browse/v59/n4/f . html

Figure 37: Ranking of HITS 60up m12 for “java” at Princeton

www.princeton.edu/"barshied/planets/planets.html

www.princeton.edu/ barshied/teletubbies/teletubbies.html
www.princeton.edu/ barshied/live/live.html
www.princeton.edu/"barshied/past/class98.html

www.princeton.edu/ barshied/guest/guestbook.htm

www.princeton.edu/ barshied/sounds/dmbtapelist.html

www.princeton.edu/ barshied/mand/mand.html

www.princeton.edu/ barshied/java/javagame.html
www.princeton.edu/“barshied/dragon/dragon.html
www.princeton.edu/"barshied/java/play.html
www.princeton.edu/pr/pwb/00/0508/p/empl.shtml
xray5.princeton.edu/"xin/program.html
xray2.princeton.edu/"xin/program.html
infosharel.princeton.edu/katmandu/marc/043b.html
libweb.princeton.edu/katmandu/marc/043b.html
www.princeton.edu/"as/ProgrammingServices.html

www.princeton.edu/ matalive/VirtualClassroom/v0.1/html/labl/labl_8_4.html
www.princeton.edu/as/ProgrammingServices.html
www.princeton.edu/"matalive/VirtualClassroom/v0.1/html/lab2/lab2_4.html
storacle.princeton.edu:9001/ows-adoc/java/oracle.plsql.PLSQLRuntimeException.html
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Figure 39: Ranking of HITS-SW hi m12 for “shrimp” at Computer Science
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Figure 38: Ranking of HITS for “shrimp” at Computer Science
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edu/shrimp/html/shrimp-ii.html
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edu/~
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edu/“mb/bookm. html
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rda/

cliao/research.html
cliao/resume.html

edu/"mbostock/locale/princeton_old.html
edu/shrimp/html/papers.html
edu/shrimp/html/platforms.html
edu/shrimp/html/sockets.html
edu/shrimp/html/rpc.html
edu/shrimp/html/nx.html
edu/shrimp/html/shrimp-ii.html
edu/shrimp/html/message_passingl.html
edu/shrimp/html/myrinet.html
edu/shrimp/html/graphics.html
edu/"cliao/
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Figure 40: Ranking of HITS-SW [o m12 for “shrimp” at Computer Science

4 1 Www.cs.princeton.edu/ scott/
5 2 www.cs.princeton.edu/~yzhou/
12 3 Www.cs.princeton.edu/"cliao/
13 4 WWw.cs.princeton.edu/"rda/
18 b Www.cs.princeton.edu/ mb/resume.html
21 6 www.cs.princeton.edu/grad/gradguide/integrat.htm
19 7 Www.cs.princeton.edu/ "mb/bookm.html
15 8 www.cs.princeton.edu/shrimp/software/vmmc_nt_2_0.html
1 9 Www.Ccs.princeton.edu/ "mbostock/locale/princeton_old.html
22 10 www.cs.princeton.edu/"snd/coolstuff.html
23 11  www.cs.princeton.edu/shrimp/html/shrimp-iil.html
Figure 41: Ranking of HITS-SW 80up m12 for “shrimp” at Computer Science
16 1 Www.cs.princeton.edu/"cliao/research.html
17 2 www.cs.princeton.edu/"cliao/resume.html
12 3 www.cs.princeton.edu/"cliao/

6.2.3 “sex” at Princeton

Figure 42 is the output from the standard HITS algorithm in a query for “sex” on the
Princeton domain. Figure 43 lists the top 20 results from running the hi query using the
mean_u similarity weight data; the majority of the ranked pages come from the Nassau
Weekly publication website. Figure 44 lists the top 20 results from running the hi query
using the mean_12 similarity data.

Figure 45 enumerates the top 20 results from running the lo query using the mean u
similarity weight data while figure 46 is the lo query using the mean 12 data. The pages
from the mu query are a part of a Tcl documentation site.

6.3 Analysis of HITS-SW Experiments
6.3.1 HITS as similar to HITS-SW lo

Reexamine the “java” query in section 6.2.1. The reader should note that the results for
the hi query are very different from the original HITS ranking, while the results for the lo
query are almost identical to the original version. This pattern is seen in about a fifth of
the queries run, and mostly only within the Princeton domain.

This would indicate that the original HITS query could be characterized as one that
was primarily dominated by low-similarity hyperlinks. In fact, 23 of the 25 random results
look like the original ranking but are composed of other pages from the popindex server.
The data is quite compelling.

These highly ranked clustered pages contain the relevant query terms (“java”). Presum-
ably many of these documents are considered authoritative because of the large number of
links used for navigation in such a large index. There are, of course, a number of legitimate
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Figure 42: Ranking of HITS for “sex” at Princeton

1 popindex.princeton.edu/browse/v59/n4/ai.html
2 popindex.princeton.edu/browse/v59/n2/n.html
3 popindex.princeton.edu/browse/v59/n1/n. html
4 popindex.princeton.edu/browse/v62/n3/n.html
5 popindex.princeton.edu/browse/v65/n4/n.html
6 popindex.princeton.edu/browse/v65/n2/n.html
7 popindex.princeton.edu/browse/v57/n3/n.html
8 popindex.princeton.edu/browse/v57/n1/n.html
9 popindex.princeton.edu/browse/v62/n2/n.html
10  popindex.princeton.edu/browse/v52/n3/n.html
11 popindex.princeton.edu/browse/v54/n2/n.html
12 popindex.princeton.edu/browse/v54/nl/n.html
13  popindex.princeton.edu/browse/v55/n2/n.html
14  popindex.princeton.edu/browse/v55/n3/n.html
156  popindex.princeton.edu/browse/v64/n2/n.html
16  popindex.princeton.edu/browse/v58/n2/n.html
17  popindex.princeton.edu/browse/v58/n1/n.html
18  popindex.princeton.edu/browse/v54/n4/n.html
19  popindex.princeton.edu/browse/v56/n3/n.html
20 popindex.princeton.edu/browse/v58/n3/n.html
Figure 43: Ranking of HITS-SW hi mu for “sex” at Princeton
762 1 www.princeton.edu/ "paw/order_100years.html
763 2 www.princeton.edu/ nweekly/forum/index.html
765 3 www.princeton.edu/ nweekly/culture/1999/11/stern/index.html
766 4 www.princeton.edu/ "nweekly/forum/1999/11/bolivia/index.html
767 5 www.princeton.edu/ nweekly/culture/2000/02/beachrev/index .html
768 6 www.princeton.edu/ nweekly/culture/2000/02/jeffreyrev/index.html
770 7 www.princeton.edu/ "nweekly/fiction/1999/12/benson/index.html
774 8 www.princeton.edu/ nweekly/culture/1999/11/dismemberment/index.html
773 9 www.princeton.edu/ nweekly/culture/1999/11/rage/index.html

772 10 www.princeton.edu/"nweekly/page2/1999/10/frenchfry/index.html
776 11  www.princeton.edu/ nweekly/forum/2000/01/ethnic/index.html
764 12  www.princeton.edu/"nweekly/verbatim/1999/09/30/index.html

777 13 www.princeton.edu/"nweekly/culture/1999/10/whitney/index.html
778 14  www.princeton.edu/ nweekly/forum/1999/09/mensmags/index.html
779 15 www.princeton.edu/"nweekly/news/1999/10/conspiracy/index.html
780 16 www.princeton.edu/ nweekly/news/2000/02/fakecandidacy/index.html
781 17  www.princeton.edu/ nweekly/news/1999/11/mahir/index.html

782 18 www.princeton.edu/ nweekly/forum/2000/02/handjob2/index.html
769 19 www.princeton.edu/"nweekly/verbatim/1999/11/11/index.html

787 20 www.princeton.edu/ nweekly/forum/2000/02/hospital/index.html
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Figure 44: Ranking of HITS-SW hi m12 for “sex” at Princeton

1059 1 www.princeton.edu/pr/pwb/00/0910/7c.shtml

834 2 www.dailyprincetonian.com/Content/2000/05/05/edits/196.html

1261 3 www.princeton.edu/pr/pwb/00/0925/2a.shtml

833 4 www.dailyprincetonian.com/Content/2000/04/25/news/335.html

863 b5 www.dailyprincetonian.com/Content/2000/09/20/edits/235.html

832 6 www.dailyprincetonian.com/Content/2000/09/27/edits/246.html

868 7 www.dailyprincetonian.com/Content/2000/09/27/news/538.html

867 8 www.dailyprincetonian. com/Content/2000/09/25/news/527 .html

866 9 www.dailyprincetonian.com/Content/2000/09/20/news/500.html

1110 10  www.princeton.edu/ humanres/ben/publicat.htm

1047 11  www.princeton.edu/hr/ben/publicat.htm

851 12 www.princeton.edu/"lgba/Archives/Pride/Pride97/thursday.shtml

1315 13  www.princeton.edu/ humanres/ben/domtoc.htm

1279 14  www.princeton.edu/hr/ben/domtoc.htm

1245 15  www.princeton.edu/pr/pwb/00/1002/3a.shtml

1235 16  www.princeton.edu/ humanres/ben/children.htm

1231 17  www.princeton.edu/hr/ben/children.htm

775 18 www.princeton.edu/ nweekly/verbatim/1999/12/02/index.html

771 19  www.princeton.edu/"nweekly/verbatim/1999/11/18/index.html

769 20 www.princeton.edu/ nweekly/verbatim/1999/11/11/index.html
Figure 45: Ranking of HITS-SW lo mu for “sex” at Princeton

1 1 popindex.princeton.edu/browse/v59/n4/ai.html

142 2 popindex.princeton.edu/browse/v59/n3/h.html

242 3 popindex.princeton.edu/browse/v59/n3/0.html

140 4 popindex.princeton.edu/browse/v59/n3/m.html

236 5 popindex.princeton.edu/browse/v59/n3/1 .html

377 6 popindex.princeton.edu/browse/v59/n3/k.html

233 7 popindex.princeton.edu/browse/v59/n3/g.html

373 8 popindex.princeton.edu/browse/v569/n3/e.html

375 9 popindex.princeton.edu/browse/v59/n3/d.html

392 10 popindex.princeton.edu/browse/v59/n3/c.html
385 11  popindex.princeton.edu/browse/v59/n3/b.html
84 12 popindex.princeton.edu/browse/v59/n4/s.html
243 13  popindex.princeton.edu/browse/v59/n4/o.html
141 14 popindex.princeton.edu/browse/v59/n4/m.html
235 15 popindex.princeton.edu/browse/v59/n4/1.html
143 16  popindex.princeton.edu/browse/v59/n4/h.html
234 17 popindex.princeton.edu/browse/v59/n4/g.html
374 18 popindex.princeton.edu/browse/v59/n4/e.html
391 19 popindex.princeton.edu/browse/v59/n4/c.html
376 20 popindex.princeton.edu/browse/v59/n4/d.html
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Figure 46: Ranking of HITS-SW lo m12 for “sex” at Princeton

popindex.princeton.edu/browse/v59/n4/ai.html
popindex.princeton.edu/browse/v569/n2/n.html
popindex.princeton.edu/browse/v59/n1/n.html
popindex.princeton.edu/browse/v62/n3/n.html
popindex.princeton.edu/browse/v65/n4/n.html
popindex.princeton.edu/browse/v65/n2/n.html
popindex.princeton.edu/browse/v57/nl/n.html
popindex.princeton.edu/browse/v57/n3/n.html
popindex.princeton.edu/browse/v62/n2/n.html
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10 10 popindex.princeton.edu/browse/v52/n3/n.html
12 11  popindex.princeton.edu/browse/v54/n1/n.html
11 12  popindex.princeton.edu/browse/v54/n2/n.html
13 13 popindex.princeton.edu/browse/v55/n2/n.html
14 14 popindex.princeton.edu/browse/v55/n3/n.html
156 15  popindex.princeton.edu/browse/v64/n2/n.html
16 16  popindex.princeton.edu/browse/v58/n2/n.html
17 17 popindex.princeton.edu/browse/v58/n1/n.html
18 18 popindex.princeton.edu/browse/v54/n4/n.html
19 19 popindex.princeton.edu/browse/v56/n3/n.html
20 20 popindex.princeton.edu/browse/v58/n3/n.html

citation links in these pages.??

6.3.2 Clustering in HITS and HITS-SW

Again consider the “java” query in section 6.2.1. The original HITS ranking does not provide
the most important results first. Instead, the initial set of results are all from the same
location and generally appear to be the same sort of results. This might be improved by
applying current research on clustering to eliminate or to condense a portion of these pages,
as the typical user would most likely not want all of his results to be from the same area of
the Web.

Indeed, data from many queries (including the “sex” query presented in section 6.2.3)
produced similar sorts of results, where the majority, if not all, of the ranked items came
from one cluster: at least a quarter of the queries exhibited similar findings. In the Princeton
domain, patterns emerged in such clusters. Many clusterings came from the popindex pages,
but often enough others would be information included in courses; typically, these in courses
were clusters of Java API documentation.

Knowing that often the lo queries would be dominated by clusters of data, one might
hope that there would be no clustering in the h¢ queries. Because clustering appeared with
great frequency in the lo query, we hoped that this pattern would be exclusive for this group.
It was not: the hi query indeed brought in totally new elements similar to one another.??
The results, however, were still rather clustered. Raising the similarity weight threshold did
not help either: observe figure 37 where HITS-SW was run using weights above the 60th
percentile.

22 Although this is meant in a connectivity-analysis sense, in this query the links are literally citations!
Z3The fact that they were similar should not be a surprise, as the hi query utilized only those links between
similar pages.
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Although the majority of the Math Alive pages found in the hi query (figure 35) are
eliminated, a cluster from a personal homepages surfaces in its place and the number of
ranked results drops precipitously. The drop in ranked results should not surprise the reader;
when we consider fewer edges—by narrowing the range of edge used as a parameter in HI'TS-
SW-—the number of edges used in the connectivity-analysis algorithm decreases. With fewer
edges, the resulting graph is more sparse, which leads to additional nodes becoming isolated
from other parts of the graph. Isolated nodes cannot receive high authority scores because
they do not have adjacent edges and nodes to increase their authority values.

It is interesting that clustering is still noticeable even with the high similarity queries.
Evidently, there are clusters of highly similar documents. But the cases that we have seen
thus far are unexpected. The documents with the cluster do not appear to be similar, and
yet the links within the cluster receive high similarity weights. These findings are attributed
to the structural similarity of the documents.

6.3.3 Analysis of a small query

Returning to consider the query for “shrimp” in the CS domain, illustrated in section 6.2.2,
one sees that the number of pages in the CS domain is much smaller than those throughout
Princeton. With slightly more than 20 results ranked by HITS, it is acceptable to analyze
the HITS-SW queries. The random-weighting tests do not provide any value given that
with more random-weighting tests than elements in the set, these random tests will likely
cover the universe of possible permutations.

The small size of this set allows us to focus specifically on the differences in ranking and
the content and links of the original pages. While this analysis can provide a different level
of insight, it becomes very subjective and is difficult to generalize to other queries.

In the hi query, the SHRIMP pages are promoted and the homepages are demoted. The
opposite is the trend in the lo query, where the homepages are promoted. This does not seem
surprising considering the content of each page: the homepages typically suggest that the
owner has participated in the SHRIMP research project, yet content is otherwise dissimilar
from all adjoining pages. The SHRIMP pages, however, have some content that is similar to
the surrounding SHRIMP project pages.

Also interesting is the Bostock home page that remains highly ranked even when using
the hi query. His page is not similar in content to the adjoining pages in the collection, but
to prevent it from appearing, the similarity parameter must be changed to include very high
similarity weights. Only a query using links weighted above the 80th percentile prevents
the Bostock page from appearing. Though if you live by the sword, you die by the sword:
such weight restrictions isolate all nodes in the graph so the number of ranked documents
is very small. This is compounded by the small size of the initial collection.

6.3.4 Structural Similarity vs. Content Similarity

An interesting trend appears in both of the hi queries explained above. In the query for
“java”, the hi results mostly consisted of pages for the Math Alive course. “Shrimp” included
many SHRIMP pages and a page from the Bostock homepage. In all of these cases, the
pages were deemed similar to the surrounding pages by the vector similarity approach used
for HITS-SW. It is sometimes difficult to understand why certain pages are considered
similar. This analysis will focus upon the Bostock page, but this reasoning applies to other
documents as well.
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The Bostock page is a part of a cluster of interlinked pages. Under the normal version
of HITS, they tend to be promoted because there are numerous links between pages that
provide for navigation, as suggested in the original HITS paper by Kleinberg, subsequent
work by Baccash, and additional research Bharat and Henzinger. [20] [7] [8] Recall that
Kleinberg’s approach is to ignore links within a single server. Since the data from the
CS domain resides on one server, such elimination was impossible, short of implementing
an arbitrary policy analogue for directories or specific paths. Because even pages within
a cluster that do not appear to be similar receive high similarity weights, using a high
threshold in HITS-SW does not seem to resolve this issue. If only to understand why such
clusters were receiving high similarity weights, a notion of “structural similarity” developed.

Consider pages from two independent sites: yahoo.com and yahoo.co.uk. Both are
English-language Yahoo webpages. Neither have links in common, and the actual content
may be very different. (Assume that we have a page about government on the Ameri-
can Yahoo and a page about hoof-and-mouth disease from the British Yahoo.) Although
these pages might have no actual common content, they are structurally similar: both have
heading information that can be identified as Yahoo and common category titles and in-
formation. A person can visually identify these sites as similar, and this judgment is based
upon more than graphical elements, colors, and layout in common: it is based the similarity
in actual content. A person can easily separate the Yahoo look and feel from the content
that adds value—the category information; this task is more difficult for computers.

Because every recognizable piece of text is turned into a keyword, no distinction is made
between navigational content and the ‘real’ content. The Bostock page that contained the
word “shrimp” links to other pages in his homepage site. All had the same look and feel,
and often the words lending to the design had a significant impact on the total number of
keywords found in the documents. This was also the case on the SHRIMP pages; all of the
pages in this cluster were from a FrontPage HTML template. All contained the same sort
of links and the associated anchor text. Because we used this anchor text as a source of
keywords, we inadvertently biased our similarity metric to include navigational text.

All three queries presented in this paper serve as simple examples of this structural
similarity effect, but our other queries exhibit this effect, too.

6.3.5 Using Links for the Similarity Measurement in HITS-SW

The reasoning behind using links as “terms” for similarity weighting was that they might
produce interesting results and that such a modification was simple given the infrastructure
already implemented. The hypothesis was that the similarity weights would be very different
from the content-based similarity weights. (See section 4.2.1 for more information on the
similarity weighting mechanisms used in HITS-SW.)

Indeed, the results for the HITS-SW queries using the mu data are often dissimilar
from the respective queries using the m12 data. Examine the HITS-SW hi queries for “sex”
using similarity data m12 and mu in figures 43 and 44. The ranking based upon mu is
highly clustered whereas the ranking for m12 is not. This might lead to the hypothesis that
using links in common as a similarity metric leads to clustering. The data does not support
such a hypothesis, however, as the lo “sex” query using mu is clustered as well. There is no
noticeable pattern to clustering in HITS-SW using mu data; as explained in section 6.3.2,
clustering is often a problem in m12 hi and lo queries.
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7 Conclusions
Or, Where will you next see HITS-SW?

We developed and tested HITS-SW as a modification to the HITS ranking algorithm.
Assigning similarity weights to all the links in a collection of web pages allowed us to run
a connectivity-analysis that considered the content of the documents. By analyzing the
content in a set of documents, we hoped to achieve a better analysis of the connectivity;
specifically, we hoped to mitigate the following problems existing in HITS:

e HITS often could not distinguish between citation links and navigation links between
documents, and thus assumed each type was equally important.

e HITS allowed citation structure to generalize a specific search and return results that
were not similar to the original query.

Results showed trends suggesting that using similarity in addition to link structure
produces regular patterns that are distinct from HITS. The resulting rankings are not
necessarily universally better for the average user, but these interesting modifications might
improve the final result:

e We could change how we chose the parameter for similarity ranges. When selecting
the range of acceptable similarity weight for the parameter for HITS-SW, we would
choose a value based upon the aggregate data. Distribution of weights would often
have various plateaus where many documents would have the exact same similarity.
We hypothesize that often those documents that receive the same similarity weight
are in the same cluster. We found a number of examples where a cluster of documents
were judged to be similar, and all received the same weighting. One example of this
was PowerPoint slideshows that appeared to be similar because they all contained
certain words: “next”, “previous”, “slide”, etc. Although it would require additional
computation, we believe that using similarity weights based upon the weights of the
relevant pages might produce different, possibly interesting, results.

e We could remove similar results by using clustering algorithms. Using a standard
method for clustering documents, we would minimize the number of duplicate docu-
ments and hopefully those with similar locality. This could be achieved by simplifying
the topology of the Web by collapsing multiple documents within a given domain,
server, or directory before using HITS-SW for ranking. This might ensure greater dif-
ferences between HITS-SW and HITS and perhaps the patterns in HITS-SW would
become clarified.

e We could change the method for collecting keywords from documents. It might be
wise to consider different portions of a document as different levels of importance. The
text in the title might be much more important than other content in the document.
Content in the middle of the document might be more important than navigational
buttons at the top or left side of the screen. While it might be difficult to extract
actual content from navigational and other structural content, this would be an area
worth investigating.

With these modifications, we think that we could more precisely determine whether
the patterns in our data consistently produce results that are different from HITS. These
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should also allow a better determination whether the results from HITS have legitimately
improved, as the themes in the rankings should be more pronounced.

Our hope is that future studies will be able to use this information to produce a refined
algorithm that is more careful in obtaining precise similarity data to produce targeted
results. The preliminary results, however, show that including similarity information in a
connectivity-based algorithm produces greatly modified results.
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A

Aggregate Entropy Data
Or, Will the reader examine indistinguishable numbers?

Definitions for these terms may be found in section 4.3.2. Each set of seven rows describes
the aggregate entropy data for a specific query: the first four correspond to HITS-SW hi
and lo queries using similarity weights mean_12 and mean_u; the latter three rows refer to
data from the mean, median, and standard deviation for the random trials.

Column One denotes whether the query corresponds to the Computer Science or the
Princeton domain.

Column Two corresponds to actual query. Note that “‘a’ ‘b’” means ‘a’ AND ‘b’
whereas “‘a b’” means the phrase ‘a b’.

Columns Three and Four describe the type of ranking for the query. Note that the
median values may come from different random runs as—e.g., the median value for
the inversions may come from random trial 3 while the median value for the distance
may come from random trial 17.

Columns Five and Six refer to the number of elements ranked. “Total” refers to the
number of elements in the HITS query, and “new” to the row.

Columns Seven and Eight refer to the number of inversions found in the top ten
(“¢10”) elements and the original top ten elements (“orig”).

Columns Nine and Ten refer to the amount of intersection with the original HITS
query in the top ten (“t10”) and top twenty (“t20”) ranked elements.

Column Eleven denotes the distance the top ten elements traveled.

Table 1: Aggregate Entropy

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10
cs ‘felten’ hi ml2 215 158 4 1 3 13 15.25
cs ‘felten’ hi mu 215 141 7 2 3 12 16.72
cs ‘felten’ lo ml2 215 208 21 4 5 14 12.86
cs ‘felten’ lo mu 215 192 10 3 3 9 16.55
cs ‘felten’ rand mean 215 194.88 6.92 4.6 8.24 | 17.76 5.65
cs ‘felten’ rand med 215 195 7 5 8 18 5.66
cs ‘felten’ rand | stddev 0 3.61 1.8 1.78 0.72 1.01 1.12
cs ‘graph’ hi ml2 408 275 14 3 5 5 19.26
cs ‘graph’ hi mu 408 271 9 3 5 6 18.03
cs ‘graph’ lo ml2 408 358 9 6 8 13 8.2
cs ‘graph’ lo mu 408 348 10 7 8 12 8.04
cs ‘graph’ rand mean 408 350.12 2.6 1.76 8.8 14.08 3.83
cs ‘graph’ rand med 408 349 2 2 9 14 3.79
cs ‘graph’ rand | stddev 0 4.87 1.73 1.36 0.65 1.47 2.03
cs ‘graphics’ hi ml2 3912 3623 14 0 0 2 32.41
cs ‘graphics’ hi mu 3912 3488 11 9 7 16 12.22
cs ‘graphics’ lo ml2 3912 3537 2 0 4 12 10.06
cs ‘graphics’ lo mu 3912 3678 1 1 4 11 11.56
cs ‘graphics’ rand mean 3912 3585.76 | 11.36 3.8 6.6 16.08 8.96
cs ‘graphics’ rand med 3912 3586 10 3 7 16 9.38
cs ‘graphics’ rand | stddev 0 19.85 4.49 2.33 0.87 1.68 1.3
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Table 1: Aggregate Entropy continued

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10
cs ‘herbach’ hi ml2 4 4 0 0 3 3 0
cs ‘herbach’ hi mu 4 3 0 0 2 2 1
cs ‘herbach’ lo ml2 4 4 2 2 3 3 1.79
cs ‘herbach’ lo mu 4 4 1 1 3 3 1
cs ‘herbach’ rand mean 4 4 0.72 0.72 3 3 0.7
cs ‘herbach’ rand med 4 4 1 1 3 3 1
cs ‘herbach’ rand | stddev 0 0 0.68 0.68 0 0 0.63
cs ‘java’ hi ml2 2734 2406 0 0 0 0 50.79
cs ‘java’ hi mu 2734 2188 6 2 6 7 16.93
cs ‘java’ lo ml2 2734 2395 4 2 7 13 6.99
cs ‘java’ lo mu 2734 2379 7 2 5 9 11.04
cs ‘java’ rand mean 2734 2512.08 3.76 2.52 8.04 | 11.24 6.5
cs ‘java’ rand med 2734 2511 4 3 8 12 6.35
cs ‘java’ rand | stddev 0 10.54 2.15 1.58 0.68 1.54 1.66
cs ‘language’ hi ml2 1092 770 10 0 0 8 33.99
cs ‘language’ hi mu 1092 738 4 0 3 9 16.05
cs ‘language’ lo ml2 1092 973 5 3 6 11 10.78
cs ‘language’ lo mu 1092 842 12 6 5 8 14
cs ‘language’ rand mean 1092 962.04 | 12.2 2.28 5.52 | 15.32 | 10.86
cs ‘language’ rand med 1092 964 12 2 6 15 10.65
cs ‘language’ rand | stddev 0 8.2 4.1 2.01 1.08 1.31 1.53
cs ‘language’ ‘java’ hi ml2 526 406 23 3 3 16 16.25
cs ‘language’ ‘java’ hi mu 526 381 4 0 3 9 16.05
cs ‘language’ ‘java’ lo ml2 526 448 5 3 6 11 10.78
cs ‘language’ ‘java’ lo mu 526 389 12 6 5 8 14
cs ‘language’ ‘java’ rand mean 526 476.88 | 12.16 2.24 5.52 | 15.32 | 10.84
cs ‘language’ ‘java’ rand med 526 479 12 2 6 15 10.65
cs ‘language’ ‘java’ rand | stddev 0 5.19 4.04 1.94 1.08 1.31 1.52
cs ‘lapaugh’ hi ml2 112 73 2 2 7 12 12.24
cs ‘lapaugh’ hi mu 112 84 4 4 7 10 12.79
cs ‘lapaugh’ lo ml2 112 112 13 4 5 10 14
cs ‘lapaugh’ lo mu 112 110 10 2 4 8 13.16
cs ‘lapaugh’ rand mean 112 100.52 5.96 5.52 9 14.68 4.94
cs ‘lapaugh’ rand med 112 101 6 6 9 15 4.88
cs ‘lapaugh’ rand | stddev 0 3.11 2.52 2.24 0.65 1.99 1.43
cs | ‘microsoft windows’ hi ml2 22 13 13 2 5 11 11.67
cs | ‘microsoft windows’ hi mu 22 11 16 1 4 10 12.51
cs | ‘microsoft windows’ lo ml2 22 19 9 5 7 17 10.07
cs | ‘microsoft windows’ lo mu 22 22 21 17 9 19 10.42
cs | ‘microsoft windows’ | rand mean 22 18.48 | 11 5.72 7.16 | 16.64 7.94
cs | ‘microsoft windows’ | rand med 22 19 11 5 7 17 7.88
cs | ‘microsoft windows’ | rand | stddev 0 1.42 4.56 3.31 0.8 1.47 1.1
cs ‘network’ hi ml2 788 597 6 0 0 0 29.41
cs ‘network’ hi mu 788 575 6 1 7 11 9.46
cs ‘network’ lo ml2 788 699 12 11 8 16 9.65
cs ‘network’ lo mu 788 606 3 3 7 17 9.79
cs ‘network’ rand mean 788 707.6 12.28 | 10.16 8.84 | 15.6 7.31
cs ‘network’ rand med 788 708 12 10 9 16 7.44
cs ‘network’ rand | stddev 0 8.6 5.14 4.17 0.69 1.29 1.47
cs ‘problem’ hi ml2 1354 829 23 0 2 7 32.03
cs ‘problem’ hi mu 1354 822 21 2 5 5 24.64
cs ‘problem’ lo ml2 1354 1226 13 9 6 13 11.64
cs ‘problem’ lo mu 1354 1101 10 3 5 11 12.66
cs ‘problem’ rand mean 1354 1134.56 | 10.44 8.64 8.8 14.8 7.01
cs ‘problem’ rand med 1354 1131 10 8 9 15 6.95
cs ‘problem’ rand | stddev 0 11.79 4.46 4.01 0.41 1.12 1.52
cs ‘security’ hi ml2 608 503 13 0 0 0 36.51
cs ‘security’ hi mu 608 464 9 0 4 18 13.3
cs ‘security’ lo ml2 608 563 2 1 3 5 15.64
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Table 1: Aggregate Entropy continued

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10
cs ‘security’ lo mu 608 504 5 1 3 4 15.63
cs ‘security’ rand mean 608 564.36 | 10.52 2.6 5.52 | 13.84 | 10.45
cs ‘security’ rand med 608 565 10 2 6 14 10.58
cs ‘security’ rand | stddev 0 7.38 2.97 1.89 1.23 1.72 1.8
cs ‘security’ ‘java’ hi ml2 361 310 3 0 0 5 35.5
cs ‘security’ ‘java’ hi mu 361 295 7 0 3 18 14.42
cs ‘security’ ‘java’ lo ml2 361 333 2 1 3 5 15.64
cs ‘security’ ‘java’ lo mu 361 318 5 1 3 4 15.63
cs ‘security’ ‘java’ rand mean 361 338.88 | 10.72 2.68 5.56 | 13.84 | 10.39
cs ‘security’ ‘java’ rand med 361 339 10 2 6 14 10.54
cs ‘security’ ‘java’ rand | stddev 0 5.04 2.82 1.91 1.26 1.72 1.81
cs ‘shrimp’ hi ml2 24 19 3 1 8 17 6.7
cs ‘shrimp’ hi mu 24 18 15 10 8 15 7.98
cs ‘shrimp’ lo ml2 24 12 12 2 3 8 16.01
cs ‘shrimp’ lo mu 24 17 11 4 4 13 13.61
cs ‘shrimp’ rand mean 24 21.04 | 13.36 6.28 6.56 | 16.92 9.87
cs ‘shrimp’ rand med 24 21 13 5 6 17 10.07
cs ‘shrimp’ rand | stddev 0 1.14 6.93 5.18 1.23 0.57 1.97
cs ‘solaris’ hi ml2 102 80 2 0 0 4 20.93
cs ‘solaris’ hi mu 102 65 18 0 1 2 27
cs ‘solaris’ lo ml2 102 80 9 0 5 9 8.78
cs ‘solaris’ lo mu 102 81 4 4 8 16 591
cs ‘solaris’ rand mean 102 89.6 14.52 0.88 2.56 8.36 | 16.19
cs ‘solaris’ rand med 102 89 15 0 0 8 20.44
cs ‘solaris’ rand | stddev 0 2.99 6.62 1.59 3.15 4.1 6.25
cs ‘theory’ hi ml2 359 206 12 1 4 6 18.1
cs ‘theory’ hi mu 359 186 7 1 2 3 24
cs ‘theory’ lo ml2 359 347 8 3 6 15 9.28
cs ‘theory’ lo mu 359 317 8 4 7 15 8.22
cs ‘theory’ rand mean 359 308.64 4.52 3.24 7.56 | 14.24 6.32
cs ‘theory’ rand med 359 311 4 3 7 14 6.33
cs ‘theory’ rand | stddev 0 8.15 2.2 1.98 0.87 1.42 1.75
pr ‘admissions’ hi ml2 2165 787 21 10 7 18 10.34
pr ‘admissions’ hi mu 2165 1132 13 4 7 13 8.12
pr ‘admissions’ lo ml2 2165 2154 12 1 7 15 6.91
pr ‘admissions’ lo mu 2165 2050 11 1 7 15 6.75
pr ‘admissions’ rand mean 2165 1893.92 | 10.48 5.84 8 16.52 6.4
pr ‘admissions’ rand med 2165 1895 11 6 8 17 6.67
pr ‘admissions’ rand | stddev 0 11.35 3.85 3.57 0.65 0.87 1.36
pr ‘basketball’ hi ml2 1254 430 9 0 1 1 25.58
pr ‘basketball’ hi mu 1254 423 1 0 1 1 22.55
pr ‘basketball’ lo ml2 1254 1252 11 4 7 12 9.96
pr ‘basketball’ lo mu 1254 1140 6 4 5 13 10.84
pr ‘basketball’ rand mean 1254 1059.92 | 13.08 2.64 5 11.88 | 12.55
pr ‘basketball’ rand med 1254 1061 12 2 5 11 12.85
pr ‘basketball’ rand | stddev 0 11.43 4.4 2.63 1.44 1.62 2.17
pr ‘chapel’ hi ml2 1282 191 31 3 4 7 22.09
pr ‘chapel’ hi mu 1282 628 4 0 0 0 40.97
pr ‘chapel’ lo ml2 1282 1279 0 0 0 0 31.78
pr ‘chapel’ lo mu 1282 1173 17 0 0 0 37.88
pr ‘chapel’ rand mean 1282 1077.4 13.52 2 3.48 7.16 | 20.15
pr ‘chapel’ rand med 1282 1079 13 1 4 10 12.57
pr ‘chapel’ rand | stddev 0 13.78 6.33 2.92 3.07 6.07 | 12.07
pr ‘cit’ hi ml2 1776 1045 37 0 0 4 26.97
pr ‘cit’ hi mu 1776 509 14 2 3 8 19.33
pr ‘cit’ lo ml2 1776 1416 0 0 2 2 26.52
pr ‘cit’ lo mu 1776 1760 13 2 4 4 23.3
pr ‘cit’ rand mean 1776 1369.08 | 16.84 0.68 2.2 5.08 | 23
pr ‘cit’ rand med 1776 1372 17 0 2 5 21.87
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Table 1: Aggregate Entropy continued

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10
pr ‘cit’ | rand | stddev | 0 ] 1511 | 518 [ 111 ] 132 ] 25 [ 459
pr ‘class’ hi ml2 14568 6484 19 2 3 6 16.77
pr ‘class’ hi mu 14568 6565 2 0 3 7 13.42
pr ‘class’ lo ml2 14568 | 12687 10 1 7 12 11.05
pr ‘class’ lo mu 14568 | 13463 14 2 7 11 11.52
pr ‘class’ rand mean 14568 | 12356.36 8.68 2.8 5.96 | 10.8 10.99
pr ‘class’ rand med 14568 | 12363 9 3 6 11 11.03
pr ‘class’ rand | stddev 0 37.26 3.56 1.58 0.89 1.61 1.45
pr ‘dinky’ hi ml2 216 56 27 6 5 17 15.08
pr ‘dinky’ hi mu 216 152 14 5 7 20 7.7
pr ‘dinky’ lo ml2 216 215 18 3 6 20 10.67
pr ‘dinky’ lo mu 216 108 8 0 0 0 32.89
pr ‘dinky’ rand mean 216 197.6 17.88 6 6.32 | 19.08 | 10.16
pr ‘dinky’ rand med 216 198 19 6 6 19 10.07
pr ‘dinky’ rand | stddev 0 2.97 4.75 3.63 1.14 0.49 1.25
pr ‘dormnet’ hi ml2 338 91 5 0 5 14 9.53
pr ‘dormnet’ hi mu 338 92 5 0 3 12 12.04
pr ‘dormnet’ lo ml2 338 336 6 4 6 9 10.29
pr ‘dormnet’ lo mu 338 320 7 4 8 13 6.88
pr ‘dormnet’ rand mean 338 294.44 6.8 4.04 6.92 | 14.96 7.42
pr ‘dormnet’ rand med 338 294 7 3 7 15 7.49
pr ‘dormnet’ rand | stddev 0 4.27 3.3 2.7 1 1.86 1.05
pr ‘felten’ hi ml2 81 10 10 0 2 5 17.01
pr ‘felten’ hi mu 81 24 16 2 6 10 9.68
pr ‘felten’ lo ml2 81 81 19 9 8 16 9.99
pr ‘felten’ lo mu 81 79 17 12 8 10 11.39
pr ‘felten’ rand mean 81 60.04 | 16.64 | 10.28 7.36 | 11.2 10.48
pr ‘felten’ rand med 81 60 19 11 8 12 11.33
pr ‘felten’ rand | stddev 0 3.09 8.59 7.57 1.89 2.31 3.91
pr ‘forbes’ hi ml2 924 227 9 0 0 2 33.83
pr ‘forbes’ hi mu 924 394 8 5 9 12 4.33
pr ‘forbes’ lo ml2 924 920 6 3 8 18 5.08
pr ‘forbes’ lo mu 924 867 17 0 0 0 25.17
pr ‘forbes’ rand mean 924 779.72 | 12.24 3.72 5.84 | 11.48 | 11.29
pr ‘forbes’ rand med 924 782 9 4 8 15 7.38
pr ‘forbes’ rand | stddev 0 9.99 6.77 2.94 3.54 6.96 8.14
pr ‘frist’ hi ml2 680 260 3 0 2 7 17.4
pr “frist’ hi mu 680 254 11 0 1 1 34.2
pr ‘frist’ lo ml2 680 676 12 0 2 7 28.56
pr “frist’ lo mu 680 634 6 1 8 15 6.29
pr “frist’ rand mean 680 569.72 8.04 3.16 6.56 | 15.48 8.17
pr “frist’ rand med 680 571 8 3 7 16 7.65
pr ‘frist’ rand | stddev 0 7.15 3.55 2.79 1.26 1.23 1.65
pr ‘glee’ hi ml2 215 55 13 0 2 3 26.03
pr ‘glee’ hi mu 215 93 20 0 1 3 28.97
pr ‘glee’ lo ml2 215 216 28 0 0 4 33.11
pr ‘glee’ lo mu 215 177 4 0 0 0 35.13
pr ‘glee’ rand mean 215 183.52 | 21.36 1.88 5.64 | 11.6 15.44
pr ‘glee’ rand med 215 183 22 2 5 11 16.07
pr ‘glee’ rand | stddev 0 4.26 5.28 1.3 1.15 1.89 4.36
pr ‘graph’ hi ml2 716 182 26 0 0 0 42.3
pr ‘graph’ hi mu 716 304 3 0 0 0 42.48
pr ‘graph’ lo ml2 716 714 0 0 10 20 0
pr ‘graph’ lo mu 716 668 14 0 0 0 31.57
pr ‘graph’ rand mean 716 629.84 | 16.72 2.36 3.2 8.56 | 19.27
pr ‘graph’ rand med 716 629 18 1 3 9 17.93
pr ‘graph’ rand | stddev 0 6.88 6.83 2.48 1.71 3.55 5.03
pr ‘graphics’ hi ml2 7792 4742 1 0 2 3 33.46
pr ‘graphics’ hi mu 7792 1619 1 0 2 5 32.49
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Table 1: Aggregate Entropy continued

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10
pr ‘graphics’ lo ml2 7792 7754 6 0 0 0 45.64
pr ‘graphics’ lo mu 7792 7347 5 0 0 0 45.63
pr ‘graphics’ rand mean 7792 6960.04 4.56 2.64 7.8 15.2 5.38
pr ‘graphics’ rand med 7792 6956 5 2 8 15 5.38
pr ‘graphics’ rand | stddev 0 27.01 2.18 1.82 0.87 1.26 1.29
pr ‘herbach’ hi ml2 35 9 19 8 5 8 11.18
pr ‘herbach’ hi mu 35 10 16 6 6 9 9.43
pr ‘herbach’ lo ml2 35 34 0 0 9 19 0.79
pr ‘herbach’ lo mu 35 27 7 7 8 14 7.45
pr ‘herbach’ rand mean 35 28.52 4.96 2.6 8.08 | 14.92 4.63
pr ‘herbach’ rand med 35 28 5 2 8 15 4.38
pr ‘herbach’ rand | stddev 0 1.94 2.13 1.55 0.57 1.15 1.44
pr ‘java’ hi ml2 1254 533 27 0 0 0 47.81
pr ‘java’ hi mu 1254 709 8 0 0 0 46.43
pr ‘java’ lo ml2 1254 1203 1 1 10 20 1
pr ‘java’ lo mu 1254 1171 10 0 0 0 38.18
pr ‘java’ rand mean 1254 1120.72 | 17.44 1.6 2.64 6.92 | 20.77
pr ‘java’ rand med 1254 1121 17 1 3 7 19.19
pr ‘java’ rand | stddev 0 9.21 8.37 1.96 1.44 3.16 4.84
pr ‘language’ hi ml2 7456 2723 6 0 0 0 42.52
pr ‘language’ hi mu 7456 3241 6 0 0 0 51.53
pr ‘language’ lo ml2 7456 7236 0 0 10 20 0
pr ‘language’ lo mu 7456 6959 3 0 0 0 46.98
pr ‘language’ rand mean 7456 6589.84 | 18.12 0.4 1.28 3.36 | 28.29
pr ‘language’ rand med 7456 6590 19 0 1 4 25.96
pr ‘language’ rand | stddev 0 20.44 6.55 0.91 1.14 1.91 7.7
pr ‘language’ ‘java’ hi ml2 238 18 23 0 0 1 33.51
pr ‘language’ ‘java’ hi mu 238 101 13 0 0 6 32.75
pr ‘language’ ‘java’ lo ml2 238 237 0 0 8 18 7.92
pr ‘language’ ‘java’ lo mu 238 209 13 0 2 2 26.4
pr ‘language’ ‘java’ rand mean 238 197.96 | 18.16 1.52 2.64 9.6 19.1
pr ‘language’ ‘java’ rand med 238 197 18 1 3 10 17.5
pr ‘language’ ‘java’ rand | stddev 0 5.01 6.72 1.61 1.5 2.38 5.55
pr ‘lapaugh’ hi ml2 31 10 12 4 6 7 9.64
pr ‘lapaugh’ hi mu 31 18 14 1 6 17 8.78
pr ‘lapaugh’ lo ml2 31 31 16 4 5 17 12.52
pr ‘lapaugh’ lo mu 31 30 24 2 3 11 17.88
pr ‘lapaugh’ rand mean 31 28.96 | 15.8 3 5.64 | 16.72 | 10.67
pr ‘lapaugh’ rand med 31 29 17 3 5 17 11.91
pr ‘lapaugh’ rand | stddev 0 1.17 7.45 1.71 0.99 1.28 2.19
pr ‘menu’ hi ml2 5630 1936 28 0 0 0 55.23
pr ‘menu’ hi mu 5630 1194 15 0 0 0 37.78
pr ‘menu’ lo ml2 5630 5598 0 0 0 0 51.95
pr ‘menu’ lo mu 5630 5374 3 0 0 0 51.95
pr ‘menu’ rand mean 5630 5011.24 8.64 2.84 6.36 | 13 8.48
pr ‘menu’ rand med 5630 5010 8 2 6 13 8.38
pr ‘menu’ rand | stddev 0 20.07 3.23 2.27 1.11 1.87 1.83
pr | ‘microsoft windows’ hi ml2 282 88 13 0 0 3 34.87
pr | ‘microsoft windows’ hi mu 282 88 3 0 0 0 34.36
pr | ‘microsoft windows’ lo ml2 282 279 11 2 8 13 6.71
pr | ‘microsoft windows’ lo mu 282 268 2 2 10 19 2
pr | ‘microsoft windows’ | rand mean 282 258.4 9.24 0.4 2.8 5.16 | 18.95
pr | ‘microsoft windows’ | rand med 282 258 9 0 3 5 19.13
pr | ‘microsoft windows’ | rand | stddev 0 4.09 4.8 0.76 1.19 1.82 2.78
pr ‘nassoons’ hi ml2 110 19 20 5 6 10 14.18
pr ‘nassoons’ hi mu 110 59 15 0 2 4 20.35
pr ‘nassoons’ lo ml2 110 110 11 2 6 13 11.54
pr ‘nassoons’ lo mu 110 93 14 7 7 14 10.84
pr ‘nassoons’ rand mean 110 96 9.36 4.32 5.92 | 14.2 10.49
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Table 1: Aggregate Entropy continued

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10
pr ‘nassoons’ rand med 110 96 10 4 6 14 10.62
pr ‘nassoons’ rand | stddev 0 2.48 4.35 2.87 1.26 1.58 2.35
pr ‘network’ hi ml2 6917 2175 19 0 0 0 45.96
pr ‘network’ hi mu 6917 3093 9 5 9 10 6.17
pr ‘network’ lo ml2 6917 6850 4 4 9 20 4.58
pr ‘network’ lo mu 6917 6512 12 0 0 0 32.19
pr ‘network’ rand mean 6917 6229.2 13.08 0.04 0.24 0.6 28.64
pr ‘network’ rand med 6917 6225 12 0 0 0 29.38
pr ‘network’ rand | stddev 0 21.59 4.65 0.2 1.2 3 4.82
pr ‘president’ hi ml2 4908 1168 11 1 3 3 18.63
pr ‘president’ hi mu 4908 1736 2 1 4 5 13.54
pr ‘president’ lo ml2 4908 4877 8 2 5 11 14.94
pr ‘president’ lo mu 4908 4475 13 0 5 13 16.68
pr ‘president’ rand mean 4908 3944.08 | 10.48 2.52 5.2 10.88 | 12.67
pr ‘president’ rand med 4908 3942 11 3 5 11 12.68
pr ‘president’ rand | stddev 0 22.74 3.55 1.5 1.04 2.33 2.05
pr ‘problem’ hi ml2 10204 2361 15 2 3 14 15.27
pr ‘problem’ hi mu 10204 4178 3 2 7 18 8.04
pr ‘problem’ lo ml2 10204 | 10112 5 1 3 5 17.64
pr ‘problem’ lo mu 10204 9471 24 0 0 0 48.43
pr ‘problem’ rand mean 10204 8161.8 8.52 1.4 4.56 8.12 | 12.44
pr ‘problem’ rand med 10204 8774 9 1 4 8 13.06
pr ‘problem’ rand | stddev 0 2147.91 3.4 1.47 1.45 2.54 3.23
pr ‘prospect’ hi ml2 3113 506 2 0 5 6 15.74
pr ‘prospect’ hi mu 3113 1436 7 0 1 1 33.69
pr ‘prospect’ lo ml2 3113 3106 3 0 0 0 36.91
pr ‘prospect’ lo mu 3113 2906 23 0 0 0 51.93
pr ‘prospect’ rand mean 3113 2607.68 8.44 1.64 4.92 9.2 24.3
pr ‘prospect’ rand med 3113 2613 6 1 8 15 5.5
pr ‘prospect’ rand | stddev 0 17.11 6.01 1.8 4.2 7.94 | 23.1
pr ‘security’ hi ml2 4985 1398 7 0 0 0 45.58
pr ‘security’ hi mu 4985 2316 1 1 5 6 21.49
pr ‘security’ lo ml2 4985 4957 7 1 6 19 7.26
pr ‘security’ lo mu 4985 4662 23 0 0 3 22.28
pr ‘security’ rand mean 4985 4137.72 | 14.08 0.08 0.24 2.16 | 24.11
pr ‘security’ rand med 4985 4305 15 0 0 2 25.49
pr ‘security’ rand | stddev 0 862.28 4.92 0.4 1.2 1.62 6.06
pr ‘security’ ‘java’ hi ml2 218 29 16 0 0 0 32.44
pr ‘security’ ‘java’ hi mu 218 111 33 0 0 8 33.14
pr ‘security’ ‘java’ lo ml2 218 217 2 2 9 20 2.5
pr ‘security’ ‘java’ lo mu 218 198 4 0 0 0 28.64
pr ‘security’ ‘java’ rand mean 218 190.4 17.76 1.48 2.64 9.32 | 18.92
pr ‘security’ ‘java’ rand med 218 190 19 1 3 10 17.13
pr ‘security’ ‘java’ rand | stddev 0 3.74 6.21 1.64 1.47 3.52 4.65
pr ‘sex’ hi ml2 1967 194 21 0 0 0 49.27
pr ‘sex’ hi mu 1967 1182 3 0 0 0 47.88
pr ‘sex’ lo ml2 1967 1948 1 1 10 20 1
pr ‘sex’ lo mu 1967 1843 8 0 1 1 35.99
pr ‘sex’ rand mean 1967 1704.68 | 18.52 1.04 2.28 5.44 | 24.35
pr ‘sex’ rand med 1967 1707 18 0 2 5 25.47
pr ‘sex’ rand | stddev 0 11.13 4.99 1.77 1.49 1.56 4.07
pr ‘shrimp’ hi ml2 75 14 10 2 5 6 16.46
pr ‘shrimp’ hi mu 75 44 3 0 2 7 20.78
pr ‘shrimp’ lo ml2 75 75 0 0 0 7 19.04
pr ‘shrimp’ lo mu 75 69 3 0 5 10 13.5
pr ‘shrimp’ rand mean 75 62.32 9.84 1.44 3 9.32 | 15.66
pr ‘shrimp’ rand med 75 63 8 1 3 9 16.31
pr ‘shrimp’ rand | stddev 0 3.44 5.81 1.66 1.83 1.46 3.43
pr ‘solaris’ hi | ml2 | 349 | 84 4 [ © 1 [ 1 [ 25
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Table 1: Aggregate Entropy continued

domain, query string, query type elements inversions intersection dist
total new t10 orig t10 t20 t10

pr ‘solaris’ hi mu 349 126 18 0 0 0 25.99
pr ‘solaris’ lo ml2 349 343 15 4 5 17 13.79
pr ‘solaris’ lo mu 349 333 2 1 9 19 3.79
pr ‘solaris’ rand mean 349 311.44 | 20.32 6.2 5.76 | 14.36 | 12.29
pr ‘solaris’ rand med 349 311 21 6 5 14 13.37
pr ‘solaris’ rand | stddev 0 4.34 7.44 3.39 1.01 1.44 2.59
pr ‘sprint’ ‘football’ hi ml2 81 45 7 3 4 4 17.27
pr ‘sprint’ ‘football’ hi mu 81 26 9 1 2 6 21.39
pr ‘sprint’ ‘football’ lo ml2 81 81 26 0 1 9 21.41
pr ‘sprint’ ‘football’ lo mu 81 74 8 5 8 16 5.67
pr ‘sprint’ ‘football’ rand mean 81 70.64 | 14.12 1.44 4.84 | 13.2 11.99
pr ‘sprint’ ‘football’ rand med 81 71 14 1 5 13 12.19
pr ‘sprint’ ‘football’ rand | stddev 0 2.4 6.33 1.12 1.11 1.53 2
pr ‘theory’ hi ml2 4084 711 32 0 0 0 49.01
pr ‘theory’ hi mu 4084 1766 17 0 0 0 47.18
pr ‘theory’ lo ml2 4084 4057 3 3 10 18 2.79
pr ‘theory’ lo mu 4084 3759 26 0 0 8 21.48
pr ‘theory’ rand mean 4084 3404.6 22.2 0.2 0.84 4.32 | 24.87
pr ‘theory’ rand med 4084 3408 22 0 1 4 25.04
pr ‘theory’ rand | stddev 0 17.75 4.39 0.5 0.85 1.35 2.3
pr ‘visual’ hi ml2 2117 422 23 0 0 0 37.57
pr ‘visual’ hi mu 2117 597 24 0 0 0 39.57
pr ‘visual’ lo ml2 2117 2102 3 3 9 20 3.38
pr ‘visual’ lo mu 2117 1947 9 7 9 20 6.25
pr ‘visual’ rand mean 2117 1726.92 | 11.08 6.28 7.36 | 16.96 8.14
pr ‘visual’ rand med 2117 1727 11 6 7 17 8.04
pr ‘visual’ rand | stddev 0 16.56 3.48 3.35 0.91 1.24 1.62
pr ‘whales’ hi ml2 223 12 9 0 2 2 29.25
pr ‘whales’ hi mu 223 56 9 2 4 4 23.27
pr ‘whales’ lo ml2 223 223 25 0 2 2 28.6
pr ‘whales’ lo mu 223 215 15 3 3 3 26.28
pr ‘whales’ rand mean 223 141.16 | 23.16 0.44 1.76 3.44 | 27.69
pr ‘whales’ rand med 223 141 23 0 1 3 27.77
pr ‘whales’ rand | stddev 0 6.82 6.11 0.96 1.16 1.26 2.42
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